
> Ashraf Bhuiyan, Intel Corporation
> Pete Garcin, ActiveState

> October 26, 2017 @ ActiveState/Intel® Webinar

Optimizing Machine Learning
with Tensorflow,
ActivePython and Intel

> Pete Garcin
> Developer Advocate at ActiveState
> 15+ years in software in various

roles
> Twitter/GitHub: rawktron

Machine Learning
> Transforming almost every business
> Exploding ecosystem of tools, making

it more accessible to even non-experts
> TensorFlow, by Google has become

the most popular package in this
ecosystem

TensorFlow
● Google’s library for ML
● Expresses calculations as a

computation graph
● Many language bindings
● Supports/provides pre-

trained models
● 72K stars on GitHub!

Tensorflow
> Official bindings for Python, C, Java,

Go
> Library is written in C++
> Used as a ‘back end’ in wrapper

libraries

TensorFlow
> Computation Graph is a

graph where the nodes
are operators (add, sub,
multiply, etc.)

> Edges are tensors
> Tensors are effectively N-

dimensional arrays

Operation

Tensor A Tensor B

Output
Tensor

Tensors
> N-dimensional arrays
> Types of operations:

>Matrix operations
>Linear algebra
>Vector math

Optimization Cases
> Training neural networks
> Large data sets
> Complex deep learning networks
> Real-time Inference

Optimizing TensorFlow
> Data storage

>Allocations, Conversions, Layout, etc.
> Parallelization

>Taking advantage of cores, etc.
> Instruction optimization

>MKL style operation optimization

Intel Optimizations
> Intel provides optimizations to take maximum

advantage of their hardware

> For example, Intel MKL (Math Kernel Library)
provides impressive results on fundamental
math operations

Intel Optimizations
> ActivePython includes MKL, and work to include

additional optimizations as they become
available

> TensorFlow specific optimizations offer dramatic
speed increases for commercial applications

Simple MKL Performance Example
for nSize in range(0, 10):

a = np.random.rand(nSize,nSize)

result = np.linalg.eig(a);

A simple test that computes the eigenvalues and normalized eigenvectors of a random square
matrix of increasing size.

Linear Algebra Test - NumPy w/ Intel® MKL

4X Faster!

Optimizing TensorFlow
> Mohammad Ashraf Bhuiyan - Intel Artificial

Intelligence Group, Senior Software Engineer
> 10+ years in software in various roles
> GitHub: mbhuiya

Deep Learning: Example

Filter = 3 x 3 Stride = 2 Pad_size = 1

Convolution Parameters:
Number of outputs/feature-maps: < 4 >
Filter size: < 3 x 3 >
Stride: < 2 >
Pad_size (for corner case): <1>

Feature
maps

Deep Learning: Train Once Use
Many Times

Step 1: Training
(Over Hours/Days/Weeks)

Person

90% person
8% traffic light

Input data

Output
classification

Create deep
network

Step 2: Inference
(Real Time)

New input from
camera and

sensors

Output
classification

Trained neural
network model

97%
person

Trained
Model

Bigger Data Better Hardware Smarter Algorithms

Deep Learning: Why Now?

Image: 1000 KB / picture
Audio: 5000 KB / song
Video: 5,000,000 KB / movie

Transistor density doubles
every 18 months
Cost / GB in 1995: $1000.00
Cost / GB in 2015: $0.03

Advances in algorithm
innovation, including neural
networks, leading to better
accuracy in training models

TensorFlow
• 2nd generation open source machine learning framework from Google*
• Widely used across Google in many key apps – search, Gmail, photos,

translate, etc.

• General computing mathematical framework used on:

• Deep neural network

• Other machine learning algorithm

• Core system provides set of key computational extendable kernel
• Core in C++, front end wrapper is in python

• Multi-node support using proprietary GRPC, VERBS, MPI protocols

Tensorflow Optimizations at Intel

1. Operator-level optimizations in TensorFlow* for Intel® Architectures
• Intel® MKL integration

2. Graph-level optimizations in TensorFlow* for Intel® Architectures
• Data layout conversion optimization
• Node merging optimization
• Memory allocation
• Load balancing

Operator-level optimization
• Intel® MKL has optimized common

set of primitives

• Call Intel® MKL API for executing
Tensorflow operation

• Require Data layout conversion:
> TF code
> TF layout to MKL layout
> Call MKL API
> MKL layout to TF layout
> TF code

Operator-level optimizations:
Example

class MklConv2DOp : public OpKernel {

void Compute (OpKernelContext* context) override {

const Tensor& tf_input = context->input(0);

const Tensor& tf_filter = context->input(1);

Tensor* output = context->allocate_output(..);

mkl_input = convert_to_mkldnnlayout(tf_input);

mkl_filter = convert_to_mkldnnlayout(tf_filter);

mkl_output = mkldnn_conv2d_fwd(mkl_input, mkl_filter,…);
*output = convert_to_tflayout(mkl_output);

}

};

Graph optimizations address the overhead of data layout conversion

Forward

• Conv2D
• Relu
• MaxPooling
• AvgPooling
• LRN
• FusedBatchNorm
• MatMul

• MklToTF (convert)

Backward

• Conv2DGrad
• ReluGrad
• MaxPoolingGrad
• AvgPolingGrad
• LRNGrad
• FusedBatchNormGrad

• TransposeCpu
• Reshape

Tensorflow* Operations optimized for
Intel® Architectures

Graph optimizations

Graph optimizations in TensorFlow*
for Intel® Architectures

• Graph has complete view of the operations and their context.
• Enable cross-operation optimizations

• Graph optimizations
1. Data layout conversion optimizations
2. Node merging (also called Fusion)
3. Memory allocation
4. Load balancing

Data Layout Conversion
Optimization

Data layout conversion optimization
- Example

• Layout conversions are expensive
data shuffling operations.

• The challenge is how to avoid
unnecessary conversions

• Optimizations:
• Find out sub-graphs that contain all

operators supported by Intel® MKL.
• Then introduce layout conversions on

the boundary of the subgraphs.

Layout conversion optimization

• Based on Google’s suggestions, our
current implementation emits Intel®
MKL layout as an extra output tensor.

• Example: if X = Conv2D(A, B) was earlier
operator, then X_mkl = _MklConv2D(A,
B, A_m, B_m) is a new operator.

✓ A_m, B_M are MKL layout of A and B

Need Graph Rewrite Pass : Rewrite
TF op to MKL op

• Example:
• Conv2D takes 2 inputs and produces 1 output.
• We want Conv2D to accept 4 inputs and

produce 2 output.
• That is why we need new Conv2D operator

(_MklConv2D).
• A graph pass rewrite TF operators into MKL

operators.

• File: core/graph/mkl_layout_pass.cc

Node fusion optimization

Fusion optimization

• Identify common pattern of operators that arise in most deep learning
models

• Merge matching subgraph for the pattern to produce smaller graph nodes

• Currently, we merge Conv2D+Bias to new node _MklConv2DWithBias.

• Implementation
• Perform in the same graph rewrite pass that rewrites nodes for data layout

conversion optimization

Conv2D and BiasAdd: Merge
process

Forward Pass

Backward Pass

Conv2D

input

BiasAdd

Filter

Bias Conv2DWithBias

input Filter Bias

BiasAddGrad
Conv2DBac
kpropInput

Conv2DBac
kpropFilter

Relu
Grad

Conv2DBack
propBias

Conv2DBac
kpropInput

Conv2DBac
kpropFilter

Before Merge After Merge

Relu
Grad

Memory Allocation

Optimization: Memory Allocation
• Most NN operators allocate huge chunk of memory (Conv2D ~

hundred of MBs)
• Default CPU allocator in TensorFlow -> frequent allocs/deallocs of

huge chunk of memory -> frequent mmap/unmap -> unnecessary
page clears

• We developed Custom Pool Allocator using existing Pool allocator.
• Allocator holds on to released memory rather than releasing to OS

directly.
• Code: tensorflow/core/common_runtime/mkl_cpu_allocator.h

Load Balancing

• Tensorflow is a data-flow graph.
• It offers excellent opportunity for exploiting parallelism
✓ Between operators.
✓ Within operators.
• Thread pool parameters:

1. Inter_op_parallelism_threads = max number of operators that
can be executed in parallel

2. Intra_op_parallelism_threads = max number of threads to use
for executing an operator

3. MKL Threads = operators controlled using OMP_NUM_THREADS.
OMP_NUM_THREADS is conceptually same as
intra_op_parallelism_threads.

Thread Pool and Parallelism

Current Threading Issues & Solution
> Problem:

• Incorrect setting of inter_op_threads and intra_op_threads can lead to over-
or under-subscription, leading to poor performance.

> Solution:
• Settings for inter_op, intra_op and OMP_NUM_THREADS were explored to get the

best performance . Typically:
• Intra_op = OMP_NUM_THREADS = # of physical cores in CPU
• inter_op = # of sockets in a system
• Google performance guide: https://www.tensorflow.org/performance/performance_guide

• No changes to Tensorflow code; changes to the run command.

Performance Improvement

Optimized Tensorflow Performance
on Intel® Xeon® processor

Optimized Tensorflow Performance
on Intel® Xeon Phi® processor

How Do I Get Order of Magnitude
CPU Speedup?
• Optimized TensorFlow on Intel architectures available from the public git.

• git clone https://github.com/tensorflow/tensorflow.git
• Configure for best performance on CPU:

• Run “./configure” from the TensorFlow source directory
• Building for best performance on CPU

• Use following command to create a pip package that can be used to install the
optimized TensorFlow wheel

• bazel build --config=mkl --s --c opt //tensorflow/tools/pip_package:build_pip_package
• Automatically downloads latest MKL-ML

• Install the optimized TensorFlow wheel
• bazel-bin/tensorflow/tools/pip_package/build_pip_package ~/path_to_save_wheel
• pip install --upgrade --user ~/path_to_save_wheel/wheel_name.whl

Summary
• TensorFlow* is widely used DL and AI framework

• It has been slow on CPU until recently
• Unique performance challenges addressed: MKL, data layout, inter/intra

layer parallelization, etc.
• Significant performance gains from Intel optimization on Intel® Xeon and

Xeon Phi processors

• Call to action:
• Use the right configuration for Tensorflow building
• Find the best set of parameter for running models with Tensorflow
• Get the orders of magnitude higher performance

Legal Disclaimers
• Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor

families: Go to: Learn About Intel® Processor Numbers http://www.intel.com/products/processor_number
• Some results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software

design or configuration may affect actual performance.
• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark

and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance
of that product when combined with other products.

• Intel does not control or audit the design or implementation of third party benchmarks or Web sites referenced in this document. Intel encourages all of its customers to
visit the referenced Web sites or others where similar performance benchmarks are reported and confirm whether the referenced benchmarks are accurate and reflect
performance of systems available for purchase.

• Relative performance is calculated by assigning a baseline value of 1.0 to one benchmark result, and then dividing the actual benchmark result for the baseline
platform into each of the specific benchmark results of each of the other platforms, and assigning them a relative performance number that correlates with the
performance improvements reported.

• SPEC, SPECint, SPECfp, SPECrate, SPECpower, SPECjbb, SPECompG, SPEC MPI, and SPECjEnterprise* are trademarks of the Standard Performance Evaluation
Corporation. See http://www.spec.org for more information.

• TPC Benchmark, TPC-C, TPC-H, and TPC-E are trademarks of the Transaction Processing Council. See http://www.tpc.org for more information.
• No computer system can provide absolute reliability, availability or serviceability. Requires an Intel® Xeon® processor E7-8800/4800/2800 v2 product families or

Intel® Itanium® 9500 series-based system (or follow-on generations of either.) Built-in reliability features available on select Intel® processors may require additional
software, hardware, services and/or an internet connection. Results may vary depending upon configuration. Consult your system manufacturer for more details.
For systems also featuring Resilient System Technologies: No computer system can provide absolute reliability, availability or serviceability. Requires an Intel® Run
Sure Technology-enabled system, including an enabled Intel processor and enabled technology(ies). Built-in reliability features available on select Intel® processors
may require additional software, hardware, services and/or an Internet connection. Results may vary depending upon configuration. Consult your system
manufacturer for more details.
For systems also featuring Resilient Memory Technologies: No computer system can provide absolute reliability, availability or serviceability. Requires an Intel® Run
Sure Technology-enabled system, including an enabled Intel® processor and enabled technology(ies). built-in reliability features available on select Intel® processors
may require additional software, hardware, services and/or an Internet connection. Results may vary depending upon configuration. Consult your system
manufacturer for more details.

http://www.intel.com/products/processor_number

Optimization Notice

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors
for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee
the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

	Optimizing Machine Learning with Tensorflow, ActivePython and Intel
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Deep Learning: Example
	Deep Learning: Train Once Use Many Times
	Slide Number 19
	TensorFlow
	Tensorflow Optimizations at Intel
	Operator-level optimization
	Operator-level optimizations: Example
	Slide Number 24
	Graph optimizations
	Graph optimizations in TensorFlow* for Intel® Architectures
	Data Layout Conversion Optimization
	Data layout conversion optimization - Example
	Layout conversion optimization
	Need Graph Rewrite Pass : Rewrite TF op to MKL op
	Node fusion optimization
	Fusion optimization
	Conv2D and BiasAdd: Merge process
	Memory Allocation
	Optimization: Memory Allocation
	Load Balancing
	Thread Pool and Parallelism
	Current Threading Issues & Solution
	Performance Improvement
	Optimized Tensorflow Performance on Intel® Xeon® processor �
	Optimized Tensorflow Performance on Intel® Xeon Phi® processor �
	Slide Number 42
	Summary
	Slide Number 44
	Slide Number 45

