
Managing Dependencies 
ActiveState Deminar



About ActiveState

Managing Dependencies and 
Runtime Security

● Track-record: 97% of Fortune 1000, 20+ years open source

● Polyglot: 5 languages - Python, Perl, Tcl, Go, Ruby

● Runtime Focus: concept to development to production



Welcome

Managing Dependencies and 
Runtime Security

Pete Garcin, Developer Advocate, ActiveState (@rawktron)



Overview

Managing Dependencies and 
Runtime Security

● Managing Project Dependencies
○ Pip/requirements
○ ActivePython

● Virtual Environments
○ PipEnv

● Q&A



Configuring Dev Environment

Managing Dependencies and 
Runtime Security

git clone https://github.com/ActiveState/activedeminar



Your dependency tree:

Managing Dependencies and 
Runtime Security



Managing Deps

Managing Dependencies and 
Runtime Security

● Vendored Deps
○ Advantages: guaranteed security, compatibility, stability, 

availability
○ Disadvantages: larger repo, you have to manually 

maintain - could be out of date, conflicts with system 
installs



Managing Deps

Managing Dependencies and 
Runtime Security

● Requirements.txt/Pipfile
○ Have to ‘install’ and build from a repo BUT you don’t

have to maintain the code and ship it yourself
○ You need to pin versions to prevent bleeding edge
○ Use a virtualenv for isolation



Managing Deps

Managing Dependencies and 
Runtime Security

● Pre-built distributions
○ No discipline approach
○ Most popular packages already pre-built, tested, and 

included in your distro, quarterly updates
○ As the standard install across a large org or team can 

work well
○ Not updated frequently
○ Not customized to your needs
○ Overall may not fit your use case



Vendoring Deps in Python

Managing Dependencies and 
Runtime Security

● Requires a virtualenv to prevent conflicts
● May involve generating your own wheels for local pip servers
● Not widely used
● Higher maintenance overhead
● Can be good/necessary if you have custom patches



Creating requirements.txt

Managing Dependencies and 
Runtime Security

● Can use “pip freeze” but this gives us everything in our 
system environment.

● Let’s use pipreqs:
○ https://github.com/bndr/pipreqs
○ pip3 install pipreqs
○ pipreqs . 

https://github.com/bndr/pipreqs


Pinning Versions

Managing Dependencies and 
Runtime Security

● Pinning means forcing a specific version to be installed

● Why? Reproducible builds.

● Syntax:

○ Framework==0.9.4

○ Library>=0.2

 



Reproducible Builds

Managing Dependencies and 
Runtime Security

● Guarantee the exact same build in two locations

● Ensure you have the same versions of every package

● Requires a lockfile, or a “pip freeze”



Virtual Environments

Managing Dependencies and 
Runtime Security

● A Virtual Environment is a self-contained, sandboxed 
environment -- just for your app. 

● It only has the packages you specify and they are totally 
distinct from the system installed ones.



Virtual Environments

Managing Dependencies and 
Runtime Security

● Complex but critical for app deployment, development.
● Can use ‘virtualenv’ to create and manage them but there 

is a new tool combining pip and virtualenv.



PipEnv

Managing Dependencies and 
Runtime Security

● Enter PipEnv: New “Community Standard” application 
combines Pip/virtualenv and extends their functionality in 
a single app.

● Let’s install it here:
○ https://github.com/pypa/pipenv

pip3 install pipenv
● You can initialize a clean environment, Python 3:

pipenv -three

https://github.com/pypa/pipenv


Generating Pipfile

Managing Dependencies and 
Runtime Security

● We can generate a pipfile from our
requirements.txt using the following
command:

pipenv install

HANDY TIP

We can generate a 
virtualenv of 
ActivePython using: 

pipenv 
--python="/home/para
llels/AP36/bin/pytho
n3" --site-packages 
install



Generating Pipfile

Managing Dependencies and 
Runtime Security

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true
name = "pypi"

[packages]
numpy = "==1.14.3"
tensorflow = "==1.8.0"
Flask = "==1.0.1"

[dev-packages]

[requires]
python_version = "3.6"



Generating Pipfile.lock

Managing Dependencies and 
Runtime Security

● Generate a lockfile that contains the fully resolved dep 
tree for our project:

pipenv lock
● Required for a deterministic build.
● Warning: could fail to resolve a dependency conflict!



Install all Dependencies

Managing Dependencies and 
Runtime Security

● Let’s spawn a shell inside our virtualenv:
pipenv shell

● The “sync” command will install everything in the .lock 
file:

pipenv sync



Project Complete

Managing Dependencies and 
Runtime Security

● We now have a project that has:
○ A virtualenv created for it distinct from our system install
○ A pipfile that defines all the deps for our project generated 

from our requirements.txt
○ A lockfile that is a fully resolved version of all deps for this 

project.
○ All deps installed for our project in that virtualenv
○ Our project ready to go!



Running Project

Managing Dependencies and 
Runtime Security

● Remember to spawn a shell inside our virtualenv:
pipenv shell

● We can deploy our flask server using this command:
python3 app.py



Verify it works

Managing Dependencies and 
Runtime Security

● Let’s check that our service is running:
curl http://localhost:8000?file=./mypoodle.jpg



Success!



Packaging and Distribution

Managing Dependencies and 
Runtime Security

● Further topics:
○ Generating a setup.py
○ Generating a docker image



Installing ActivePython

Managing Dependencies and 
Runtime Security

● Easy option: Install ActivePython 
(includes everything we need)

● https://www.activestate.com/act
ivepython/downloads

https://www.activestate.com/activepython/downloads
https://www.activestate.com/activepython/downloads


Future Platform Support

Managing Dependencies and 
Runtime Security

What if we could reduce ALL of what 
we just did to a single command?



Future Platform Support

Managing Dependencies and 
Runtime Security

● Working to streamline and simplify this process.
● Tight integration and compatibility with community tools is

key.
● Share your pain points working with dependency

management and environment configuration:
○ peteg@activestate.com



Future Platform Support

Managing Dependencies and 
Runtime Security

● Dependency Resolution.
● Reproducible Builds.
● Customized Builds/Environments.
● “One click” Environment Configuration.

● https://start.activestate.com/platform-home/



Q & A



Thank you!
● Learn more about our Platform:

https://www.activestate.com/platform

● Download & try our ActivePython:
https://www.activestate.com/activepython

● Contact platform@activestate.com for more
information.

https://platform.activestate.com
https://www.activestate.com/activepython/downloads
mailto:platform@activestate.com



