MLOps: Machine Learning Operationalization

ActiveState Webinar
Panelists

- **Nisha Talagala**, Co-Founder, CTO & VP Engineering, ParallelM
- **Boris Tvaroska**, Global Artificial Intelligence Solutions Lead, Lenovo
Housekeeping

- Webinar recording and slides will be available shortly
- Share questions with panelists using the Question panel
- Q&A session following presentations
Track-record: 97% of Fortune 1000, 20+ years open source

Polyglot: 5 languages - Python, Perl, Tcl, Go, Ruby

Runtime Focus: concept to development to production
Machine Learning Operationalization

Nisha Talaga, ParallelM
MLOps: Machine Learning Operationalization

Nisha Talagala
Co-Founder, CTO & VP Engineering
ParallelM

nisha.talagala@parallelm.com
MLOps: The Last Mile
From Data Science to Business ROI

NISHA TALAGALA
CTO, ParallelM
Growing AI Investments; Few Deployed at Scale

Out of 160 reviewed AI use cases:

88% did not progress beyond the experimental stage

But successful early AI adopters report:

Profit margins 3–15% higher than industry average

Source: “Artificial Intelligence: The Next Digital Frontier?”, McKinsey Global Institute, June 2017
The ML Development and Deployment Cycle

Bulk of effort today is in the left side of this process (development)
- Many tools, libraries, etc.
- Democratization of Data Science
- Auto-ML
What makes ML uniquely challenging in production?

Part I: Dataset dependency

- ML ‘black box’ into which many inputs (algorithmic, human, dataset etc.) go to provide output.
- Difficult to have reproducible, deterministically ‘correct’ result as input data changes.
- ML in production may behave differently than in developer sandbox because live data ≠ training data.
What makes ML uniquely challenging in production?

Part II: Simple to Complex Practical Topologies

- Multiple loosely coupled pipelines running possibly in parallel, with dependencies and human interactions
- Feature engineering pipelines must match for Training and Inference (CodeGen Pipelines can help here)
- Control pipelines, Canaries, A/B Tests etc.
- Further complexity if ensembles, federated learning etc are used
What makes ML uniquely challenging in production?
Part III : Heterogeneity and Scale

• Possibly differing engines (Spark, TensorFlow, Caffe, PyTorch, Sci-kit Learn, etc.)
• Different languages (Python, Java, Scala, R ..)
• Inference vs Training engines
 • Training can be frequently batch
 • Inference (Prediction, Model Serving) can be REST endpoint/custom code, streaming engine, micro-batch, etc.
 • Feature manipulation done at training needs to be replicated (or factored in) at inference
• Each engine presents its own scale opportunities/issues
What makes ML uniquely challenging in production? Part IV: Compliance, Regulations…

- Established: Example: Model Risk Management in Financial Services
 - https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf

- Emerging: Example GDPR on Reproducing and Explaining ML Decisions
 - https://iapp.org/news/a/is-there-a-right-to-explanation-for-machine-learning-in-the-gdpr/

- Emerging: New York City Algorithm Fairness Monitoring
What makes ML uniquely challenging in production?

Part V: Collaboration, Process

COLLABORATION

- Expertise mismatch between Data Science & Ops complicates handoff and continuous management and optimization

PROCESS

- Many objects to be tracked and managed (algorithms, models, pipelines, versions etc.)
- ML pipelines are code. Some approach them as code, some not
- Some ML objects (like Models and Human approvals) are not best handled in source control repositories
MLOps – Automating the Production ML Lifecycle

- Machine Learning Models
- Continuous Integration/Deployment
- Model Governance
- Business Impact
- Database
- ML Health
- Business Value
- Collaboration
- ML Orchestration
MLOps, DevOps and SDLC

- Integrate with SDLC (Source control repositories, etc.) for code
- Integrate with DevOps for Automation, Scale and Collaboration
How it Works – MCenter Architecture

Data Science Platforms

MCenter Developer Connectors

MCenter Server

Analytic Engines

MCenter Agent

MCenter Agent

MCenter Agent

MCenter Agent

MCenter Agent

MCenter Agent

Models, Retraining
Control, Statistics
Events, Alerts
Data

Data Streams

Data Lakes
Summary

- We are at the beginnings of ML Operationalization
- Much like databases (backbone of production applications) need DBAs and software needs DevOps, ML needs MLOps (specialized operationalization practices, tools and training)
- For more information
 - https://www.mlops.org for MLOps resources
 - https://www.parallelml.com
Thank You
nisha.talagala@parallelem.com
Machine Learning Operationalization

Boris Tvaroska, Lenovo
Boris Tvaroska
Global Artificial Intelligence Solutions, Lenovo
btvaroska@lenovo.com
Integrating data science into SDLC

Boris Tvaroska

September 2018
Evolution of AI
Moving from research papers to applications

Research about AI

Reports using ML/DL

AI in products & services
What can happen?

I did not change a single line of code.

Junior Software Engineer after breaking the build
Different lifecycles

- Starts with change in code
- Established practice
- Iterations in days / weeks

- Starts which change in code, data or metrics
- Emerging practice
- Iterations as fast as possible, several times per day
Main challenges

Test

• The wrong result is acceptable
• Need to test for False Positives
• Need to test for False Negatives
• Longer test times
• More test cases needed

Build & Deploy

• More artifacts to work with
• Frequent changes
• Versioning of artifacts and source data
Training in test/build cycle

Possible for simple models with small amount of data

Existing toolset

Risks:
- Slow CI/CD cycle
- More failing builds
Model as a service

Model is independent

Fit languages/frameworks

Risks:
- Interface is vector
- Pre-mature service boundaries
- Multi-step application

Code

Build

Test

Independent cycles

Dataset

Experiment

Cross-Valid

Train

CV

Test

Hyperparameters

Code

Build

Test

Integrate

Train

Build

Test

Code

Build

Test

Integrate

Train

CV

Test

Dataset

Experiment

Cross-Valid

Train

Build

Test

Integrate

Train

CV

Test

Dataset
SW emerged in Data Science

Clearly defined service

Data Science toolset
Data Science framework

Risks:
- Culture clash
Practical example

- Libraries

- Transform
- Train
- Validate
- Build
- Test
- Deploy

2019 Lenovo Internal. All rights reserved.
Boris Tvaroska

Global Solution Lead for Lenovo
AI Innovation Centers

20 years of experience running engineering teams across Europe, North and South America, Middle East, India

Email: btvaroska@lenovo.com
 boris@tvaroska.sk

Linkedin: www.linkedin.com/in/boristvaroska

Twitter: @btvaroska
Q & A
Thank you to our panelists

- **Nisha Talagala**, Co-Founder, CTO & VP Engineering, *ParallelM*
- **Boris Tvaroska**, Global Artificial Intelligence Solutions Lead, *Lenovo*
What’s Next

- Learn more about our Platform: https://www.activestate.com/platform
- Watch a demo: https://www.youtube.com/watch?v=c5AlxN9ehrl
- Contact platform@activestate.com for more information.
Where to find us

Tel: **1.866.631.4581**
Website: www.activestate.com
Twitter: [@activestate](http://twitter.com/activestate)
Facebook: [activestatesoftware](http://facebook.com/activestatesoftware)