
THE DEATH OF GIANTS
WHY GO WILL REPLACE JAVA AND C

THE DEATH OF GIANTS

From finance to entertainment to hospitality, the threat of

disruption looms larger than ever today. No matter which

industry you’re in, staying relevant and competitive in today’s

business environment requires the ability to innovate faster,

turn ideas into reality more quickly, and achieve more agility.

But when it comes to the development frameworks that

you use to enable this digital innovation, there is a good

chance that the programming languages on which it relies

were created decades in the past. Today, languages like Java

and C remain at the top of the list of the most widely used

development frameworks.

To be sure, these legacy languages have served businesses

well for many years. They are tried-and-true development

frameworks that support a wide range of scenarios.

Yet the world of programming has changed significantly in the

decades since Java, C and similar languages were born. Newer,

more innovative language frameworks have emerged. The

venerable languages of old are no longer the best solutions

for meeting enterprise application development needs. They

were designed for the pre-cloud age, with a very different set

of development practices and expectations than those that

prevail today.

The norms of software delivery and deployment have changed

dramatically over the past several decades. Microservices

architectures have become key to unlocking application

agility. Modern apps are designed to be cloud-native, and

to take advantage of the loosely coupled cloud services

offered by cloud platforms. They operate across distributed

environments and use multiple cores to speed performance.

Languages like Java and C were not at all designed with cloud-

native app delivery in mind. While it is possible to use these

languages to build distributed cloud applications, they are an

awkward fit for such workloads.

For enterprises, there is a better path forward: rather than

continuing to develop in old-generation languages like Java

and C, forward-thinking organizations should adopt Go. Go is

a much newer and more nimble language. It was created with

the cloud, distributed services and agile development in mind.

And it’s ideally suited for building microservices.

This guide explains why Go is the ideal enterprise application

development solution today. It compares Go’s history with that

of legacy languages, explains Go’s technical advantages, and

highlights how and why leading companies have now shifted

to Go as their main development solution.

A BRIEF HISTORY OF JAVA, C AND GO

Comparing the histories of Java, C and Go illuminates just

how different the design philosophies and contexts of these

languages are.

Java and C
Java originated in 1991 and became publicly available in 1996.

Its broad cross-platform support quickly made it popular with

enterprise developers, even though the framework remained

largely closed-source until 2006. (And even after that, Java’s

proprietary history complicates use of the language in certain

cases, as when Oracle sued Google in 2012 over allegations of

improper use of Java APIs.)

C is even older than Java. It was created in 1972 by developers

of the Unix operating system, which was originally written in

assembly language. They hacked C together to provide a more

abstract development framework for Unix. Although C was

designed with this specific use case in mind, with virtually no

forethought regarding other types of applications, it was later

1

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://en.wikipedia.org/wiki/Oracle_America,_Inc._v._Google,_Inc.

THE DEATH OF GIANTS

2

adapted for a variety of other purposes because it was one

of the only fast, cross-platform languages available to early

generations of computer scientists.

More than two decades separate the births of Java and C. At

the points when these languages were introduced, concepts

such as cloud computing and microservices remained years in

the future.

The relationship between business needs and development

roadmaps was also very different. Satisfying business goals

did not require agile development techniques and continuous

delivery as they do today. Instead, slow, delay-prone “waterfall”

development practices dominated.

While it is possible to extend Java and C to serve purposes

for which they were not designed, or shoehorn them into

workflows for which they are a poor fit, overcoming the

outmoded design characteristics of these languages will only

become more difficult as newer software architectures and

software delivery techniques are introduced.

Go
The history of the Go programming language is entirely

different from that of Java and C.

Go was introduced in 2007, just as the cloud computing

revolution was beginning. In addition, Service Oriented

Architecture (SOA), the predecessor to modern microservices,

was in its heyday. Continuous Integration tools were becoming

common. In short, the programming landscape for which Go

was designed from the outset is the same one in which we

exist today.

Incidentally, it’s worth noting that one of Go’s main creators

was Ken Thompson, a Unix pioneer who also happened to be

a father of the C programming language. So it’s fair to say that

Go represents a modern incarnation of the same innovative

thought and programming talent that birthed C many years

ago.

Thus it’s no surprise that Go is fast becoming one of today’s

premier development languages. While it has not yet

surpassed Java and C in overall popularity, Go is enjoying an

explosive ascent. Go rose between 2016 and 2017 from 55th

to 10th place on the TIOBE ranking of programming languages,

according to usage share among developers. As noted below,

an increasing number of innovative companies are now

turning to Go to bring their software operations into the

future, and replace legacy languages that (unlike Go) were not

designed for today’s cloud-native, microservices-centric age.

GO’S TECHNICAL ADVANTAGES

Go’s features reflect its modern design and ability to solve

problems that older languages like Java and C cannot elegantly

handle.

Go’s standout features include the following:

Go is an Engineered Language
Rather than being put together quickly to solve a pressing

need (as was the case with C) or being developed for internal

use by a company and only later extended to the developer

community (as happened with Java) Go is an engineered

language. It was thoroughly planned and purpose-built from

the start to support modern hardware architectures and

simplify software maintenance for developers and sysadmins.

Go is Simple and Elegant
Go is designed to be simple to learn and use, yet deliver

maximum power to developers. It offers fast compile times

and compiles directly to machine code. It enforces clean, easily

https://www.infoworld.com/article/3208904/application-development/go-language-soars-to-new-heights-in-popularity.html
https://www.infoworld.com/article/3208904/application-development/go-language-soars-to-new-heights-in-popularity.html

THE DEATH OF GIANTS

3

readable, and dependable code by requiring strong typing. It

is extensively and freely documented online.

All of this matters in enterprise development because most

enterprise programming teams are large and consist of

engineers with varying skillsets and levels of experience.

Issues with steep language learning curves, software build

delays, and difficulty interpreting previously written lines of

code lead to delays and undercut organizations’ ability to

deliver continuous value, as users expect.

Go helps enterprises avoid all of these problems with its

elegant design.

Go Offers Built-In Garbage Collection
Traditionally, compiled programming languages like C and C++

do not handle memory automatically. Instead, developers

have to write memory management into their applications.

This is not the case with Go. Go performs “garbage collection,”

meaning it automatically identifies occupied memory space

that is no longer needed and frees the space for reuse. Go

does this regardless of the underlying hardware architecture

on which an application runs.

Garbage collection makes programmers’ workflows easier

and more efficient because they do not have to spend

time implementing memory management when writing an

application. And, perhaps most importantly, garbage collection

helps to make applications more secure because it lowers the

risk that a programming error related to memory management

could introduce a security vulnerability into an application.

Go Offers Native Concurrency
Concurrency means that multiple tasks within an application

are executed at the same time, rather than sequentially.

On today’s modern hardware, concurrency is a must for

maximizing application performance on multi-core CPUs. In

addition, modern applications are often distributed across

multiple servers, each of which may have several CPUs. This

also lends itself to the use of microservices applications,

which are small services that interact in order to compose a

complete application.

Without concurrency, it is impossible to take full advantage

of all of the computing power of modern environments, or to

have microservices-based applications perform as intended.

While concurrency can be implemented manually in older

programming languages, it is much easier to achieve

concurrency using Go. With concurrency built into Go, creating

scalable and high performing applications is much simpler

than with Java or C.

Go Applications are Easy to Deploy
Go applications are easy for developers to distribute for users,

and for users to run and install. Unlike Java, Go applications

do not depend on local interpreters or JVMs to run. Go

applications are single binaries. This is fantastic for DevOps, as

deployments are simpler than with almost any other language.

In addition, the Get tool in Go makes downloading and

installing an application as simple as running a single

command. This greatly speeds development workflows, and

makes it easy for organizations to host Go applications in a

central hub.

Easy application distribution and installation is crucial in

today’s DevOps-oriented world. The DevOps approach to

software development emphasizes consistency in software

development pipelines and easy upgrade mechanisms. These

features make software production more predictable and

http://whatis.techtarget.com/definition/strongly-typed

THE DEATH OF GIANTS

4

stable. They minimize delays, wasted time, and costs. They

improve security by reducing the number of components and

processes that are required to distribute an application.

And they make it easy for host environments (including public

clouds like Amazon Web Services (AWS), Azure and Google

Cloud) to provide integrations for Go-based applications

because the distribution process for these applications is

consistent and has a small footprint.

Go Simplifies Data Science
While Go has a broad range of applications, data science

is emerging as an increasingly important context for Go

development. Go helps enterprises by making it easy to

integrate algorithms written in Python by a data scientist into

a Go microservices application.

At the same time, Go provides excellent application

performance without requiring developers to optimize

parts of their applications in fast languages like C and C++

(although Go supports such usages if desired). And because

of the simple, consistent deployment processes discussed in

the preceding section, Go allows data scientists to focus on

working with data, rather than on the tedious processes of

application setup and configuration.

GO’S LIMITATIONS

No language is the perfect fit for every situation, of course. It’s

important for enterprises to recognize Go’s limitations in order

to ensure that they leverage Go most effectively.

For one, Go’s strong typing requirements can be frustrating

for programmers accustomed to prototyping quickly in

a dynamic language. Go has stronger typing than C to

enforce correctness in the application by design. Go is also

not an object-oriented programming language. It requires

programmers who have been weaned in the object-oriented

tradition over the past several decades to take a new

approach to code design. For both of these reasons, Go comes

with a learning curve for many developers, but far less than

languages such as C or C++.

By design, Go lacks support for operator overloading and

keyword extensibility. This makes Go somewhat clunky to

work with for those developers that rely on those features

in other languages. The language designers did not support

these features, as they chose simplicity and readability over

complexity.

While these issues do not rule out Go as a programming

solution for modern workloads, they do mean that Go may

not be the best fit for every type of programming job or every

developer.

USING GO?

Despite Go’s limitations, the language has become the

basis for a very active and healthy open source developer

community. As of 2016, more than 700 developers had

contributed to development of Go.

In addition, Go’s advanced features and ability to simplify

complex software development processes have led a number

of major developer communities and companies to embrace

the framework.

https://golang.org/project/
https://golang.org/project/
https://dave.cheney.net/2016/03/25/go-project-contributors-by-the-numbers
https://dave.cheney.net/2016/03/25/go-project-contributors-by-the-numbers

THE DEATH OF GIANTS

5

Here are just a few examples of major open source platforms

built using Go:

Cloud Foundry. Go powers key parts of Cloud Foundry’s

microservices platform, including gorouter, which manages

connectivity for microservices applications running on Cloud

Foundry. CloudFoundry chose Go because it is lightweight,

agile and well- suited to the microservices framework that is at

the core of Cloud Foundry’s architecture.

Docker. The Docker container project, which is revolutionizing

the way applications are deployed and run, is written in Go.

Docker developers chose Go when they began working on

Docker in 2013 because a Go application is “easier to install,

easier to test, and easier to adopt,” according to Docker

programmers. They also like the readability of Go, and that

it is a “neutral” language, meaning it does not polarize the

developer community for political reasons, as some other

languages do.

InfluxDB. As a data storage system designed for extremely

fast performance and stability, InfluxDB requires highly

efficient and reliable programming, which is why they chose to

write it in Go.

Ubuntu Snappy. The goal for Canonical’s Snappy package

management system for Ubuntu Linux was to allow a

developer to distribute their application via a small footprint

package in a platform-agnostic way. It’s no surprise, then,

that, as Canonical developer Rich Spencer notes, “Go seems

perfectly suited to writing software in a snappy world.”

Go also supports the mission-critical operations of a number

of major companies, including:

Dropbox. A significant part of the software framework that

supports the Dropbox file-sharing platform, which was

originally written in Python, has been migrated to Go. Dropbox

developers say they made the switch because Go enabled

greater scalability as their infrastructure needs grew.

Netflix. A number of the microservices that power Netflix’s

video streaming platform are written in Go. Go provides a

fast but simple programming solution for creating services

that need to be able to scale easily and deliver tremendous

performance.

Google. Go was born at Google. Google conceived the

language because, as Google Engineer Rob Pike explained, the

company needed a better language for creating applications

that relied heavily on networking; needed to run on multicore

processors; could operate across distributed environments,

and so on. The languages available before Go didn’t support

these needs well.

Uber. To operate efficiently, the Uber ride-hailing service

needs to be able to keep track of the locations of cars and

users in real time. Uber does this with microservices created

using Go. Uber engineers chose Go because of its high

throughput and low latency. The Go-based location-lookup

microservice delivers the fastest lookups of all of Uber’s

services.

https://cloudfoundry.org/
https://github.com/cloudfoundry/gorouter
https://www.docker.com/
https://www.slideshare.net/jpetazzo/docker-and-go-why-did-we-decide-to-write-docker-in-go
https://www.slideshare.net/jpetazzo/docker-and-go-why-did-we-decide-to-write-docker-in-go
https://github.com/influxdata/influxdb
https://www.ubuntu.com/desktop/snappy
https://insights.ubuntu.com/2015/06/03/so-you-want-to-write-a-snappy-app/
https://www.dropbox.com
https://blogs.dropbox.com/tech/2014/07/open-sourcing-our-go-libraries/
https://www.netflix.com
http://google.com
https://talks.golang.org/2012/splash.article
https://www.uber.com
https://eng.uber.com/go-geofence/

THE DEATH OF GIANTS

6

CONCLUSION: GO IS THE KEY TO ENTERPRISE DIGITAL TRANSFORMATION

As enterprises evolve and continue to migrate workloads to the cloud and microservices architectures, the applications they run

in the cloud also need to evolve. They need to be written in languages that enable enterprise developers to take full advantage

of cloud computing environments, distributed processing, and microservices application design.

Go was specifically designed with such use cases in mind. It solves many of today’s problems related to developing, deploying

and maintaining software, while specifically addressing the needs of building tomorrow’s cloud-native software.

Go is microservices-friendly and elegant. It automates tedious tasks like memory management, yet manages to deliver top

performance at the same time. Go code is easy to read and write. Go is suited to (and already being used for) a broad array of

development needs, from databases to geolocation services and Big Data analytics.

MAKING GO ENTERPRISE-READY WITH ACTIVESTATE

Because Go is an open source language, enterprises seeking to leverage Go to accelerate their development efforts can benefit

from commercial support services for Go that are offered by ActiveState. The Go community has been quick to provide patches

and updates, as well as provide support via public forums. However, if Go is to penetrate the enterprise to the same extent as a

language like Java, commercial support will be required.

To date, ActiveState, a company with a 20-year history of delivering commercial-grade support for open source languages, is the

only vendor that has stepped forward to enable enterprises to embrace Go in order to achieve digital transformation.

ActiveState’s backing of Perl when it was first introduced is a key reason it became one of the most ubiquitously deployed open

source languages within the enterprise. And if history is any indication, that same level of commercial support will be required in

order to de-risk Go as the new, de facto open source language of choice for mission-critical enterprise applications.

ABOUT ACTIVESTATE
ActiveState, the Open Source Languages Company, believes that enterprises gain a competitive advantage when they are able to quickly create, deploy, and efficiently manage software solutions
that immediately create business value, but they face many challenges that prevent them from doing so. The Company is uniquely positioned to help address these challenges through our
experience with enterprises, people and technology. ActiveState is proven for the enterprise: More than two million developers and 97% of Fortune-1000 companies use ActiveState’s end-to-end
solutions to develop, distribute, and manage their software applications. Global customers like Bank of America, CA, Cisco, HP, Lockheed Martin and Siemens trust ActiveState to save time, save
money, minimize risk, ensure compliance, and reduce time to market.

© 2017 ActiveState Software Inc. All rights reserved. ActiveState®, ActivePerl®, ActiveTcl®, ActivePython®, Komodo®, ActiveState Perl Dev Kit®, ActiveState Tcl Dev Kit®, ActiveGo™, ActiveRuby™,
ActiveNode™, ActiveLua™ and The Open Source Languages Company™ are all trademarks of ActiveState.

ActiveState Software Inc.
business-solutions@activestate.com

Phone: +1.778.786.1100

Fax: +1.778.786.1133

Toll-free in North America:

1.866.631.4581

