
UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES
A CLOSER LOOK AT PERL, PYTHON, TCL, PHP, JAVASCRIPT AND OTHERS

11

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

ABSTRACT

Dynamic languages are high-level, dynamically typed
open source languages. These languages, designed to
solve the problems that programmers of all abilities face
in building and integrating heterogeneous systems, have
proven themselves both despite and thanks to their
independence from corporate platform strategies, relying
instead on grassroots development and support. Ideally
suited to building loosely coupled systems that adapt
to changing requirements, they form the foundation of
myriad programming projects, from the birth of the web
to tomorrow’s challenges.

INTRODUCTION

There is a category of programming languages which
share the properties of being high-level, dynamically
typed and open source. These languages have been
referred to in the past by some as “scripting languages”1
and by others as “general-purpose programming lan-
guages”. Neither moniker accurately represents the true
strengths of these languages. We propose the term
dynamic languages as a compact term which evokes both
the technical strengths of the languages and the social
strengths of their communities of contributors and users.

While many of the arguments presented in John
Ousterhout’s landmark paper on scripting are as valid
as when they were written, changes in the informa-
tion technology landscape and maturation of thinking
about open source lead us to reexamine his argu-
ment. This paper will argue that many of the pressures
on software systems, such as the push for standards-
compliant open systems and the competitive advan-
tages granted to customizable systems2, combined
with a shift from CPU-bound systems to network-

bound systems, have propelled dynamic languages
into a new, critical role. In addition to their traditional
role in support of scripting tasks, these programming
languages have demonstrated an unequaled ability to
build a diverse set of important software systems.

We believe this shift in importance warrants replacing the
term “scripting language” with one that better describes
the languages’ nature and impact, and suggest the
use of the term dynamic languages. The choice of the
word “dynamic” over “scripting” is a pragmatic one—the
original term has tended to minimize the broad range
of applicability of the languages in question. The new
term reflects the belief that the real-world value of these
languages derives more from their dynamics (technical
and social) than their approachability.

In what follows, we present the essential characteristics
of dynamic languages as they contrast with other lan-
guage categories. Popular dynamic languages are briefly
surveyed, followed by an analysis of their emergent
properties in current technical, social, economic, and
legal contexts. We suggest software environments where
they are most and least appropriate. After discussing
some popular beliefs about these languages, we explore
the future of these languages, touching both on key
upcoming challenges, as well as opportunities for growth.

LANGUAGE CATEGORIES

Among the hundreds of programming languages avail-
able, a relatively small number are widely used. These
can be grouped into a few broad categories. The catego-
rization used in this paper is deliberately not based on
strictly technical features of the languages, but instead
on a combination of technical, social, business, and use-
in-practice features.

12

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

Legacy Languages
Legacy languages, such as Cobol, Fortran, and PL/I, are
important because no matter how much one would like
to at times, the past can’t be wished away, especially in
corporate IT systems. Few IT strategies can effectively
accept a “closed world” hypothesis; hence, it is important
when considering a new language to evaluate its ability to
be bridged to preexisting systems.

System Languages
System languages include C, C++, and, more recently,
Java and C#. These languages are characterized by
strong typing (as explained in Ousterhout (1998)), the
ability to build tightly-coupled efficient systems, and,
especially for Java and C#, a tight binding between
the language and the underlying platforms (the Java
Runtime Environment and .NET Common Language
Runtime respectively). One consequence of the tight
integration between the language and the platform
is that situations which require breaking the “closed
world” assumption can be problematic.

Proprietary Languages
We use the term “proprietary languages” to refer to
languages which share many technical features with
dynamic languages, but which are owned, controlled,
and evolved by corporations. The prototypical example
is Visual Basic, which is high-level and adaptable for both
scripting tasks and building applications, but whose evo-
lution is driven directly by Microsoft’s platform plans. For
example, the evolution of Visual Basic from version 6 to
Visual Basic .NET caused considerable frustration among
its users, but makes sense from the Microsoft point
of view because Microsoft believes that all of its users
should move to using the .NET framework, something
that required deep changes in VB6.

Dynamic Languages
Described in detail in the next section, dynamic lan-
guages are defined as high-level, dynamically typed, and
open source, developed by a grassroots community
rather than a corporation or consortium.

MODERATION IN ALL THINGS

Before we discuss the strengths and weaknesses of
dynamic languages, a note about the extent of the claims
being made. The topic of programming language choice
often leads to heated arguments where categorical posi-
tions are stated, often in the face of clear evidence that
more moderate approaches may be more rational. A pri-
mary argument in this paper is that dynamic languages
play an extremely effective and crucial role as part of
an overall pragmatic programming language strategy.
Some situations may be best served by a single-language
approach, whether dynamic or not; however, many situ-
ations are best addressed with a combination of system,
proprietary and dynamic languages, with connections to
legacy systems. There is no silver bullet in the world of
programming languages.

WHAT IS A DYNAMIC LANGUAGE?

For the purposes of this paper, the term dynamic
languages refers to high-level, grassroots, open source
programming languages with dynamic typing, including
but not limited to Perl, PHP, Python, Tcl, and Ruby. We will
first cover each of the three definitional criteria (high-
level, grassroots open source, and dynamic typing). We
will then briefly introduce each of the currently popular
languages. By focusing on the most popular languages,
we’ll be able to identify: 1) properties which emerge from
combinations of the properties of the language and the

13

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

network effect exhibited by all successful open source
projects; and 2) the particular challenges of building con-
temporary software systems, taking Dynamic Languages
into account market, technical, and legal issues.

Criterion 1: High-level
The ever-increasing diversity of software systems has
pushed programming language evolution along several
dimensions which are generally referred to by a catch-all
term: “high-level”3. This evolution is evident in: 1) a bias
toward more abstract built-in data types, from associative
arrays to URIs; 2) particular syntactic choices empha-
sizing readability, concision and other “soft” aspects of
language design; 3) specific approaches to typing of vari-
ables, variously referred to as loosely typed,” “dynamically
typed,” or “weakly typed,” in clear opposition to “static
typing”; 4) automation of routine tasks such as memory
management and exception handling; and finally 5) a
tendency to favor interactive interpreter-based systems
over machine-code-generating compiler models.

Somewhat tied to each of these trends is the notion that,
as computers become faster and humans have more
to do in the same amount of time, newer programming
languages should fit with human constraints rather than
with computational ones. Thus, high-level languages aim
to require less from the human programmer, and more
from the computer. This leads, generally, to languages
that are easier to use and slower to execute (naturally,
there are exceptions to this generalization).

Criterion 2: Grassroots Open Source
The term “open source” is used in at least three
ways: The legal usage refers to open source software
licenses which encourage code sharing; the method-
ological usage refers to a development model char-
acterized by loose networks of self-organizing pools

of volunteer developers; and the sociological usage
refers to the communities which form around specific
software projects, characterized by close relationships
between users and developers.

Given the recent adoption of various open source
licenses by traditionally proprietary software behemoths,
it’s worth noting that all of the successful dynamic
languages to date are “old fashioned” open source,
meaning that an individual released an early version of
the language to “the net”, attracted a following of users
and contributors, and built a community of peers. While
the licensing aspects of an open source project make no
distinction between individual and corporate creators,
the nature of the original creator (biological or corporate)
has massive impact on the language’s adoption and
evolution , for legal as well as psychological reasons. Most
likely, contributors to Perl, Python, etc. would have been
neither as enthusiastic to help “pitch in,” nor as quickly
accepted as contributors, had the language creators
been corporations rather than individuals.

On the other hand, it’s also clear that corporations have
learned how to run successful open-source projects. The
Eclipse IDE framework, originated at IBM, has been quite
successful at gathering input from organizations, particu-
larly educational institutions.

While each of the successful dynamic languages have
chosen different specific licenses, it is far from accidental
that none selected the more extreme GPL license used
by the Linux kernel. All of the successful language com-
munities have deliberately picked licenses that fit equally
well with corporate requirements for non-viral licenses
and the Free Software Foundation’s goals (although
clearly not the tactics, given the license differences). In
general, the language communities view themselves as

14

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

on the “liberal” side of the open source debate (inasmuch
as any large group can be described as having a con-
sistent opinion), and aren’t compelled to pick sides on
the morality of proprietary licenses. This approach has
served them well, with significant successes both within
the Linux and Windows communities.

Criterion 3: Dynamically Typed
The strongest technical difference between dynamic
languages and most of their competitors is that the
typing systems (in layman’s terms, the mechanisms
by which programming languages refer to the kinds
of objects being manipulated) are more dynamic than
static. Being dynamic is an asset if one needs to be able
to change quickly. Thus, being dynamically typed makes
sense if the nature of objects being manipulated is
either unknown or unpredictable. This tends to be the
case in systems which:

1) are not precisely specified (the problems addressed
aren’t yet well understood); 2) are evolving fast (due to
changing standards or changes of opinion); or 3) need to
interact with other systems which change unpredictably
(for example, third party web applications). In addition to
dynamic typing, dynamic languages often build in other
dynamic behaviors, such as loading arbitrary code at
runtime, runtime code evaluation, and more.

POPULAR DYNAMIC LANGUAGES

While the preceding three criteria are useful in under-
standing what we define as a dynamic language, what’s
important is not their intrinsic features so much as
their extrinsic behaviors in the broader information
technology ecosystem. There, it’s important to consider
separately those dynamic languages that have proven
to be widely adopted.

Hundreds of programming languages exist, with dozens
of new ones developed every year. Our focus is on the
impact, successes, and future of programming languages
from a pragmatic, marketreflecting point of view, rather
than a more academic “state of the art” perspective.
Therefore, we look at languages that have achieved a
certain degree of popular success, rather than languages
that, although technically significant, have had less influ-
ence on the market.

Perl
Perl is often referred to as “the duct tape of the Internet.”
It arose from the need to extend the capabilities of
Unix command-line tools into a more general-purpose
programming system. Perl’s strength at processing text
and its accessibility to a broad range of users led to its
massive success concurrent with the growth of

the web. Its affinity for processing text files has meant
both that it is it used in many such situations, and that
a multitude of popular tools are built in Perl. Thus, it is a
language that many IT managers can safely assume their
staff know. In addition to being used for daily sysadmin or
“glue” tasks, Perl has been successfully used in a tremen-
dous variety of larger systems, from enterprise-class mail
processing to world-class websites such as Amazon.com.

Python
Python, of the same generation as Perl, embodies a pref-
erence for clean design and clarity over concision. Akin
to a dynamic, less verbose version of Java, Python has
found particular affinity with seasoned programmers who
are looking for rapid ways of building flexible systems. As
such, Python is often used in prototyping contexts such
as scientific computation and GUI application design,
as well as in high-performance systems. Two notable,
recent Python-powered successes include the BitTorrent

15

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

peer-to-peer system, with over 1.5 million downloads per
month, and the SpamBayes Bayesian anti-spam classi-
fier, which delivers world-class results using advanced
mathematics. In both cases, a key benefit of Python lies
in its ability to “stay out of the way” of the programmers
implementing sophisticated algorithms.

PHP
PHP, unlike Perl and Python which were very broad
in scope, focused from its inception on a single
task: building dynamic websites. It ’s safe to say that
it has succeeded, with the latest Netcraft surveys
finding PHP installed on over 16 million domains.
PHP combines a syntax that is easy for even novice
web designers to learn, with a rich library of modules
that capitalize on the fact that most websites need
to do similar things (talk to databases, cache images,
process forms, etc.). PHP is now considered the most
serious competition to the web strategies of both
Microsoft (with ASP.NET) and Sun (with J2EE).

Tcl
Tcl (short for Tool Command Language), designed with
application integration in mind, has found applicability
across a wide variety of platforms and application do-
mains. It has been particularly successful at GUI applica-
tions (through its Tk toolkit), automation in general, and
test automation in particular. Its small code size has led
to it being deployed in a variety of embedded contexts;
for example, Tcl is part of Cisco’s IOS router operating
system, and as such is included in all high-end Cisco
routers and switches. A different, but equally important,
example of Tcl usage is AOLserver, America Online’s web
server—yet another example where a scripting language
runs some of the largest and busiest production environ-
ments in the world.

JavaScript/JScript/ECMAScript
The language that is technically referred to as ECMAS-
cript, but more commonly known by the name of its
Netscape-authored implementation, JavaScript, deserves
special mention at this point. It certainly qualifies as a
dynamically-typed language, is quite high-level, and has
at least two open source implementations. Exceedingly
popular, it is supported by all major web browsers, and,
as a result, is part of a huge number of websites. Signifi-
cant applications have been built using it, especially on
the client-side of the web transaction, such as webmail
interfaces and blogging tools. It is worth noting, how-
ever, that JavaScript is unlike the languages previously
mentioned in two significant respects. First, because it
was defined as the language of the browser, it had to
combine strict security requirements (e.g. a JavaScript
program can’t, as a rule, access files on disk) with odd
user interface challenges. For example, it is “better”
for a JavaScript program to fail quietly in the case of a
programming error, and this behavior can make it a
significant challenge to build large systems in JavaScript.
Furthermore, and more critically, JavaScript has suffered
from too much corporate interest. The design of the
language was one of the battlefields between Microsoft
and Netscape, and it can be argued that the resulting
language is a casualty of war. Even with open-source
implementations, the language did not evolve according
to normal open source mechanisms; instead, evolution
was governed by the politics of the ECMA standards
process, under considerable pressures from both major
browser vendors. As a result, JavaScript is effectively
unchanging (a polite word for ‘dead’), and web designers
are pondering moves to other technologies such as Mac-
romedia’s Flash, Microsoft’s proposed XAML, or Mozilla’s
XUL frameworks.

16

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

Ruby, Groovy and Others
The languages described above are simply the most
popular today. Depending on when you read this, their
relative popularity may have shifted due to evolution of
the languages, the market requirements, fashion-like
“buzz”, importance of various platforms, etc. New lan-
guages have emerged and have achieved varied levels of
adoption. Some languages include Ruby, which provides
a blend of Perl and Python-inspired features; and

Groovy, which is an agile language for the Java Virtual
Machine and builds upon the strengths of Java but has
additional power features inspired by languages like
Python and Ruby.

It’s much too early to tell whether any or all of these
languages will achieve the success of Perl. What’s reas-
suring is that, because of the market dynamics at play,
the winners will win because they are better at doing
something that many people value.

PROPERTIES OF DYNAMIC LANGUAGES

More important than the differences among the lan-
guages noted above are their commonalities.

Technical Purity
Dynamic languages were designed to solve the technical
problems faced by their inventors, not to address specific
goals identified as part of a ‘strategic plan’ to influence
buyers of IT solutions. As such, they have a “pure” focus
on solving technical problems, with no agenda to push
a particular platform, operating system, security model,
or other piece of the IT stack (this focus is true of most
successful grassroots open source projects). The value
of technical purity is most notable in comparison to
competing proprietary languages where it is clearly not

exhibited, viz. Visual Basic’s recent changes. Note that
technical purity should not be confused with a more
academic notion of purity. The successful dynamic
languages all embrace the pragmatic constraints of the
real-world, such as integration with ‘foreign’ systems and
backwards-compatibility, even though those constraints
often make the technical details much “messier.” The
crux is that they are pure in intent, in that they do not
serve a non-technical agenda.

Optimizing Person-time, Not Computer-time
The driving forces for the creation of each major dynamic
language centered on making tasks easier for people,
with raw computer performance a secondary concern. As
the language implementations have matured, they have
enabled programmers to build very efficient software,
but that was never their primary focus. Getting the job
done fast is typically prioritized above getting the job
done so that it runs faster. This approach makes sense
when one considers that many programs are run only
periodically, and take effectively no time to execute,
but can take days, weeks, or months to write. When
considering networked applications, where network
latency or database accesses tend to be the bottlenecks,
the folly of hyper-optimizing the execution time of the
wrong parts of the program is even clearer. A notable
consequence of this difference in priority is seen in the
different types of competition among languages. While
system languages compete like CPU manufacturers on
performance measured by numeric benchmarks such as
LINPACK, dynamic languages compete, less formally, on
productivity arguments and, through an indirect measure
of productivity, on how “fun” a language is. It is apparently
widely believed that fun languages correspond to more
productive programmers—a hypothesis that would be
interesting to test.

17

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

Open Source, Deeply
All of the successful dynamic languages have, according
to our definition, a primary implementation which is open
source. This simple fact has in practice meant that the
open source implementations have been the de facto
language definition. An important consequence of the
open source nature of the primary implementation has
been that modifications to the language by third parties
have been easier to adopt into the mainstream code
base than if any kind of contractual relationship had been
necessary. Any engineer anywhere can “tweak” the lan-
guage to his or her heart’s content, without having to ask
anyone for permission. This ease with which experiments
can be performed by anyone is without equal. Main-
taining any significant modifications in the face of a lan-
guage under constant change is a maintenance burden,
and it is widely understood that it’s best to contribute
modifications back to the main code base. The resulting
phenomenon of naturally aggregating improvements
from “anybody” is (relatively) unencumbered by bureau-
cracy, either of the nondisclosure-agreement-signing
kind or of the standards-body kind. While a challenge for
organizations that require the use of standards-based
technologies, this has allowed the languages to evolve
quickly, and to incorporate feedback from stakeholders
of all sizes4. It is worth noting that academics (university
students in particular) have been able to convert ideas
into implementations with remarkable efficiency through
open source, a process that tends to be quicker than
either academic publication or the traditional industrial
model of getting the idea reified in a product.

One of the ways in which dynamic languages are deeply
open source is the almost total transparency about how
the languages are evolved. The bug lists and patch review
processes are public, and most conversations about the

evolution of the language occur on public mailing lists,
subject to the scrutiny of all. There is no hiding behind
firewalls or membership in an organization.

Evolution by Meritocracy and
Natural Selection
Dynamic languages evolve along two, often orthogonal,
directions. The core of the language is often controlled by
a tight-knit, extremely competent set of individuals who
are in charge of the language’s basic tenets. These teams
are meritocratic rather than democratic, and consider
usersuggested changes only inasmuch as they don’t
present a deviation from the aesthetic or philosophical
principles of the language design. It is through this rather
autocratic process that the languages have managed to
remain “true to their core” over 10+ years of evolution.
In contrast, the capabilities of the languages (rather than
their style) has most effectively grown through exten-
sions, libraries, and modules. In that area, individual
contributions are equally valued, and frenetic market
competition rewards authors of important and useful
modules, giving massive feedback to all contributors.
Programming languages are unique among open source
projects in that the gap between users and authors is
minute; users can give valuable design feedback because,
just like the library creators, they write software and
understand the perspective of the software designer.

It is through that bazaar of module distribution that
practical usefulness emerges, because for a dynamic
language to support a new technology, the language itself
rarely needs to change; all that’s needed is someone
to write a special-purpose module. Thus, as soon as a
library, file format, or Internet protocol becomes “useful
enough,” the language communities build language-spe-
cific modules to support it. It is the ability of open source

18

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

communities to distribute the workload to those who
first feel the need to scratch a particular itch, that makes
them able to compete effectively against multi-million
dollar efforts. It is worth noting that dynamic typing is an
important edge in the race to “embrace and extend” new
technologies; for example, if a web application changes
the schema of the data being transmitted, clients written
in a dynamically typed language will require fewer
changes than their statically typed counterparts, all other
things being equal.

Platform Neutrality
Dynamic languages have naturally been platform-
neutral. Building a programming language that
is limited to a particular platform is anathema to
language designers; the language designer tends to
believe that “everyone” would be better off by using
their language, or if not everyone, then at least ev-
eryone trying to solve a particular kind of problem
with a particular background. These goals tend to
define target audiences which span all platforms (e.g.
the programming challenges of web designers should
be mostly independent of the underlying platform).
While all of the popular dynamic languages were born
with individual platform “biases,” they also embrace
the notion that they should work as well as possible
on all platforms. Over time, each language evolves to
fit an ever-increasing set of target operating systems,
naturally covering Linux and other Unix variants,
and various Windows platforms, but also reaching
into more esoteric platforms like mainframes, super-
computers, phones, and various embedded devices.
Operating systems and platforms, more generally, are
seen as “just another context to operate in.” Whether
or not each use case is supported is simply a matter
of perceived need and volunteer time.

This approach has both negative and positive conse-
quences. Dynamic languages cannot fit frameworks
such as .NET or the JVM as well as languages explicitly
designed to fit them. On the other hand, dynamic
language communities are free from the need to
restrict themselves to specific platforms definitions,
and have tended to embrace a wider variety of plat-
forms. It ’s important to note that platform neutrality
doesn’t mean “cross-platform at any cost”, where a
feature must be available on all platforms before it is
available on any. Instead, platform-specific language
extensions (typically through libraries or modules)
are developed by users who have needs for particular
platform support.

It is thus possible to write cross-platform programs
using dynamic languages (most are), and it is equally
possible to write programs which fully exploit plat-
form-specific features.

Languages you can build a plan on because
users determine the language plan
Since the effort required for maintenance of the
language is borne by the users of the language, the
decision to end support for a platform is closely tied
to the disappearance of users of that language on that
platform. Business drivers which accelerate unneces-
sary changes, such as the idea of forcing customer
upgrades because of a requirement for revenue, don’t
exist for technologies such as dynamic languages
which are volunteer-driven and free. Importantly,
corporate users of dynamic languages who have
investments in particular ports find it relatively cheap
to maintain these ports either directly or through
funding vehicles such as specialized vendors.

19

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

WHEN TO USE DYNAMIC LANGUAGES

We’ve mentioned some successful deployments of
dynamic languages and some of their observable
properties. We’ve stated that system languages are also
important pieces of the IT puzzle. When should one
consider using a dynamic language ? There are, naturally,
no simple answers that cover every possible scenario.
In particular, any policy that prescribes a particular
language is incompatible with a value-based approach to
language choice. If we assume an environment in which
language choice is possible, however, some areas have
shown to be ideal for the use of dynamic languages.

Scripting tasks
Scripting is certainly an arena where dynamic languages
are without equal. Whether the specific task involves
simple text processing, database exploration, or gluing
together existing tools, scripting languages have the right
blend of ease-of-use, rapid development support, and
rich interfaces to support these scenarios.

Prototyping
A different use is the construction of complex systems,
especially if the requirements aren’t wellspecified ahead
of time. The domain can vary considerably, from process
automation to scientific research to GUI development.
If the programmer isn’t sure at the onset of the project
how the final application will look or act, then the rapid
development capability of dynamic languages leads to
higher productivity and better end-point quality. If it’s
“cheap and easy” to correct a mistake, you correct it
more often, leading to shorter projects or better software
(or both). Furthermore, experienced users of dynamic
languages tend to take on more ambitious projects,
because the cost of failure is lower. The rapid edit-
compile-run-test cycle exhibited by dynamic languages

has made them favorites of agile development methods,
which favor iterative approaches over top-down models.
Ideally suited for loose coupling

As argued by many observers5, always-on networks,
mobile devices and open networking protocols allow for
a radically new way of building software systems, focused
less on the PC and more on the power of coordinating
and aggregating network resources, e.g. through the use
of web services6. In this new model, deeply integrated
platforms are not as valuable as components (using the
broadest definition) accessible through open interfaces.

Steering Computational Tasks
The scientific computing area, known for its obsessive
pursuit of optimization, outrageous supercomputing
facilities and need for always-increasing computing
power, may seem odd to associate with dynamic
languages. Indeed, most serious scientific computa-
tions are done using system or legacy languages that
have benefited from decades of optimization work.
However, those optimizations are typically restricted
to specific computations (linear algebra, numeric
optimization, etc.). In many cases, the “scientific” part
of scientific computation involves a great deal of what
other disciplines would call prototyping—trying out an
idea to “see if it works.” This experimentation needs
to be done by computer scientists in collaboration
with non-computational scientists, the specialists
in physics, biology, chemistry, climatology, or other
disciplines who drive the science behind the computa-
tions. Given this environment, it is not surprising to
learn that dynamic languages are routinely used as
part of a holistic approach to scientific computation, in
which computational scientists build flexible systems
that are then easily scripted by domain experts.

20

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

Business Logic
The distinction between variable, high-level domain-
specific choices and optimized, constant building blocks
occurs in every application domain. For example, in many
corporate applications a distinction is made between
“business logic” (e.g. what data should be collected from
the user, what kinds of reports should be generated),
and the “back-end code,” (e.g. database or network calls,
communication with other subsystems). In this regard,
dynamic languages share the same benefits as languages
such as Visual Basic: rapid development, easily learned
by occasional programmers, well suited for end-user
scriptability, and forgiving to programming errors.

Advanced Technologies
Because of the language design aspects that strive to
minimize the human effort required to express com-
putational ideas in code, dynamic languages are deeply
appreciated by people writing complex or sophisticated
systems, be they nuclear scientists, network engineers, or
web architects. System languages tend to require more
discipline of the “bookkeeping” variety than do dynamic
languages, be that through requirements for explicit
type annotation, explicit memory management, interface
definitions prior to implementation, etc. While useful in
systems that require specific guarantees of robustness,
the scaffolding needed by those language approaches
can get in the way of seeing the sculpture as a whole.

A widely-held (but hard to test) belief is that the rate of
coding errors per line of code is roughly independent
of programming language, regardless of the level of
the language7. Casual inspection of high-level language
code contrasted with equivalent systems code will show
that dynamic languages are more concise. A given task
requires fewer lines of code to execute in a high-level

language than in a lower-level language,8 and thus should
have fewer errors. In addition, this suggests that high-
level languages make it easier for a programmer to keep
a larger part of their program in working memory.

Given this, the success of dynamic languages in the
scientific and engineering communities at large is not
surprising; those kinds of users need to focus on the
complexities of the business logic, and worrying about
the details of the optimized memory pools is detrimental
to getting the important work done.

WHEN NOT TO USE DYNAMIC LANGUAGES

Only the most zealous advocates of dynamic languages
will recommend their use in all situations. There are
software contexts that seem plainly inappropriate for
their use.

Some High-performance Tasks
While we’ve argued that dynamic languages can be used
to build high performance systems, even those applica-
tions rely on code written in more static languages to
do key parts of the work. Several kinds of tasks, such
as some numeric computations, machine code genera-
tion, or low-level hardware interfacing, are best done
in programming languages where the concepts being
manipulated (be they numbers, bytes, pixels, or memory
addresses) are expressed in a language optimized for
them. In most of these cases, there is no ambiguity about
the requirements—a mathematical routine should do the
same operation as it did when it was first invented—or
the types of objects manipulated. It makes sense to
use a language like Fortran or C++ (which benefit from
decades of optimization research) to implement it. There
is a diverse set of such tasks where performance is the
overwhelming concern, and where dynamic languages

21

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

would result in unacceptable results. In many cases,
combining a “steering layer” written in a dynamic
language and optimized components written in other
languages can lead to a system with the flexibility of a
dynamic language approach and the effective perfor-
mance of a low-level language.

Small Memory Systems
Dynamic languages, because they are high-level and
interpreted, require more machinery to execute than
either lower-level languages or languages that get
compiled to machine code or equivalent. Thus, generally
speaking, they are inappropriate choices for very small
memory systems.

It is interesting to consider, however, that what were
once considered very small memory systems, such
as phones and TV set-top boxes, are now laden with
enough memory to run much larger applications.

MYTHS ABOUT DYNAMIC LANGUAGES

Given that much of what is said above is “old news,”
one must wonder why dynamic languages haven’t
garnered more visibility among the mainstream,
especially in the media and corporate boardrooms.
In addition to the commercial forces at play (some of
the competing languages are actively promoted by
marketing organizations with advertising budgets and
PR firms), and acknowledging that the technical com-
munities at the core of these open source languages
tend to do a poor job of presenting their ideas to
non-technical audiences, it must be noted that part
of the problem has been a lack of challenge to persis-
tent myths or misconceptions surrounding dynamic
languages. We examine some of these critically.

Myth: “You can’t build real applica-
tions with scripting languages”
While Ousterhout (1998) should be credited for widely
publicizing the strengths and value of languages such as
Perl, Tcl, Python etc., some believe that by adopting the
moniker “scripting language,” he unwittingly facilitated
the propagation of one of the biggest criticisms of these
languages—that they are only useful for small, simple,
automation tasks, and shouldn’t be considered for
the serious programming challenges that professional
programmers routinely face. While rigorous objective
analyses on the topic are hard to find, there is an abun-
dance of anecdotal evidence suggesting that professional
programmers can, and have, built world-class systems
using these languages.

The world-wide web, arguably the most successful IT
project of the last decade, is substantially based on
dynamic languages. At every stage of the web’s growth,
from homegrown “home pages” (which were most often
powered by Perl) to today’s mission-critical websites (a
large percentage of which are written in PHP and Perl),
dynamic languages have been critical components of
identifying new challenges, prototyping architectures,
and building scalable, robust systems. It could be
claimed that, without high-level languages, a project
with the combined risk and size of Yahoo! would never
have been started, let alone completed. Web applica-
tions of all kinds, such as the Mailman list management
software, the Bugzilla bug tracking system, the Typepad/
Moveable Type blogging system, or the Gallery photo
archival system, are all powered by dynamic languages.
Google uses Python in a variety of systems. The social
software site Friendster.com recently shifted from a JSP
architecture to one based on PHP, specifically to address
performance problems.

22

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

Myth: “Dynamic languages are brittle”

Dynamic typing has in practice meant that the compiler
is unable to make strong statements about the types
of objects at compile time9. This does mean that excep-
tional conditions may occur at runtime. Instead of looking
on this as a critical weakness of dynamic languages, it can
be argued that this has led to systems which are more
robust to runtime failures than statically-typed coun-
terparts. Because runtime failures happen more often,
defensive mechanisms have been built to deal with them,
and the overall system is more stable. As a result, ap-
plications written in dynamic languages tend to fail more
gracefully than those written in lower-level languages. For
example, writing code that robustly deals with possible
network outages is orders of magnitude easier with a
dynamic language than with a language such as C. This
ability to effectively deal with exceptional situations will
only become more important as systems become more
interconnected.

Myth: “You can’t build large sys-
tems with dynamic languages”
The above sentence is usually followed by an argu-
ment as to why tight coupling, strong typing, and strict
interface checking are key to building large systems.
Smalltalk experts, who have been building large systems
for decades, probably chuckle at that argument more
than any others. Building large systems does present
different challenges than building smaller systems. The
importance of infrastructure components such as error
handling, logging, and performance monitoring are key,
as are design-time concerns such as architectural sound-
ness and scalability planning, and development-time
issues such as multi-tiered testing strategies, iterative
development, proper planning and documentation, and

so on. These challenges are orthogonal to the language
choice, and certainly quite large systems have been built
with dynamic languages.

Myth: “There’s no innovation in open source”
This myth has received airtime recently with executives
from some proprietary software vendors accusing the
open source community of producing clones rather
than building innovative software. We’ll leave it to others
to defend the work done in the domains of operating
systems or productivity applications. The argument that
open source produces no innovative work certainly
doesn’t hold much water when it comes to program-
ming languages. Not only have programming languages
typically come out of academic research efforts (which
are effectively open source), but open source language
designers have continued to innovate, even though that
innovation has occured through different mechanisms
than those of proprietary languages.

Unlike languages such as Java and C#, which are the
focus of serious, goal-directed, funded research efforts,
dynamic languages evolve in a more spontaneous (but
not necessarily worse) way. Academics worldwide find
it easy to get the implementations, understand them
(with direct help from the maintainers), experiment with
changes, and argue for language changes. Much aca-
demic language research therefore looks at the dynamic
languages as a fertile ground on which to develop next
generation approaches.

In general, the spirit of cooperation that pervades
open source makes for rapid experiments and rapid
implementations. Examples include the Stackless imple-
mentation of Python, which is proving to be exceptionally
useful in some high-performance contexts; Tcl’s virtual
filesystem, which is still unique in the flexibility it offers

23

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

developers looking to distribute their applications effort-
lessly; and the Perl 6 effort, which is the focus for con-
siderable design and engineering work toward building
a fast register-based virtual machine with unparalleled
flexibility. Perl is an interesting project to contrast with
proprietary languages. Technically speaking, the shift
from Perl 5 to Perl 6 is probably as significant as the shift
from Visual Basic 6 to Visual Basic .NET. Indeed, the archi-
tects of Perl 6 don’t expect it to be backwards-compatible
with Perl 5 (just like VB.NET isn’t backwards-compatible
with VB6). However, unlike VB, there is every reason
to believe that the Perl 5 language will continue to be
developed, supported, documented, and used for years.
The investment in Perl 5 by the community will ensure
its long-term health, as no one has a strong commercial
interest in “forcing upgrades.”

Myth: “Dynamic languages
aren’t well supported”
This myth has been fading in recent years as the ben-
efits of open source support systems have become
more well known, thanks to the success of Linux.
The dynamic language communities have organized
a variety of support mechanisms, from professional
trainers to peer-support online discussion groups to
vendors offering enterprise support contracts, to con-
tractors able to modify the languages to fit particular
customer needs, and, in some cases, shepherd the
changes back into the core language distribution.

A related point is the availability of books and other
teaching or reference resources. Book publishers
compete fiercely for shelf-space to cover dynamic
languages. It is rare not to see books on dynamic
languages among the top-sellers in the Programming
category on sites like Amazon.com.

Swift adoption of open source major organizations has
created a demand for stable open source language dis-
tributions and comprehensive support and maintenance
for open source deployments. So, when the open source
community does not provide answers to common devel-
oper pains, companies like ActiveState fill the gap with an
enterprise-grade, third-party solution for managing and
supporting open source software. ActiveState recognized
early on that businesses with commercial implementa-
tions of open source were taking big risks when it came
to code stability, unreliable technical support, and
potential license infringement. The company developed
enterprise-level open source language distributions that
have become renowned for quality and are now the
de-facto standards for millions of developers around the
world. Like all open source code, ActiveState language
distributions are provided free to the community.

Myth: “Dynamic languages
don’t have good tools”
This myth deserves two answers. The first is that
there are tools for dynamic languages, but the
providers of these tools are either not commer-
cial vendors (open source projects tend to spawn
complementary open source projects) or they are
not the same tool vendors that target proprietary or
systems languages. ActiveState has been vigorously
competing in the dynamic languages tools market
for seven years, along with many others. The tools
can be found if you look for them, and some equal or
exceed the quality and features of large commercial
vendor tools. The second answer is that the tools
for dynamic languages aren’t the same as the tools
for systems languages. If you define a tool as a piece
of software that helps you build a system better or
faster, then the diversity of software available on the

24

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

Internet targeted at dynamic language programmers
is awe-inspiring (browse through search.cpan.org
for a Perl-centric example). Because of the positive
feedback cycle evident among dynamic language
programmers, there are thousands of libraries,
modules, packages, and frameworks available for
use, most under open source licenses. When the
open source community doesn’t provide the answer
to a commonly felt pain among dynamic language
programmers, companies such as ActiveState jump in
with commercial offerings.

Myth: “Dynamic languages don’t
fit with .NET, Java, System X”
Interoperability is a natural consequence of the de-
centralized development model of dynamic languages.
All of the major languages have interfaces to well-es-
tablished frameworks, be they COM, CORBA, etc. More
recent platforms haven’t been ignored either; there
are successful ports of the dynamic languages to Java
(Jacl and Jython in particular) and interesting projects
and products targeting the .NET platform (IronPython,
PerlNET). History seems to argue that as soon as a
real and well-defined need is articulated, it’s simply
a matter of time before the right talent emerges
from the volunteer community (usually without fore-
warning) to lead the effort to meet that need.

WHAT ABOUT JAVA?

Java, especially when seen as “organized opposition to
Microsoft,” is interesting to contrast with the dynamic
languages, since a superficial look at the language could
lead one to group them together. There are technical
and non-technical reasons why Java isn’t considered a
dynamic language.

Statically Typed and Security Focused
Foremost, Java is statically typed. A Java programmer
needs to specify the type of each variable, as well as the
particular interfaces each class implements; any deviation
from these declarations causes (intended!) syntax errors
or compilation failures. The choice of static typing in Java
wasn’t done for arbitrary reasons, naturally—it was done
because it is far easier to optimize programs for which
type information is know and guaranteed by the system.
Additionally, it is far easier to make security guarantees
about statically-typed languages, and one will recall that
the need for “verifiable” code is at the foundation of
both the Java Virtual Machine architecture and the .NET
Common Language Runtime. It is possible to implement
dynamically typed languages on top of such systems
(Jython is a Python implementation for Java, and Groovy is
a new dynamically-typed language for Java), but Java-the-
language is far from that.

Not As Loose
Java’s design makes it easy to build highly integrated Java
applications, and harder to build interfaces between Java
systems and non-Java systems. This is somewhat related
to a feeling that there is a “Java way” of doing any given
task. Contrasting that with the dynamic language model
where there are multiple ways to do any one thing, one
understands why the Java approach is simpler to manage
and also possibly blinkered—changing the officially sup-
ported way of doing any one thing becomes a significant
effort—in the dynamic languages world, for better of
worse, it happens (or doesn’t!) as part of a brutal natural
selection process.

There are more subjective difference between the dy-
namics of the Java community and those of the dynamic
language communities. Dynamic language communities

25

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

are looser than the Java community. This is true at many
levels—the definition of “community member” is fuzzier
in the dynamic language world. There is no equivalent
to the formalized Java Community Process (JCP), which,
while designed to be inclusive, effectively raises the bar
compared to the informal models used by the grass-
roots open source communities10. While the JCP is more
broadly accepting of organizations than some other
standards-defining bodies, it still requires a financial
commitment from companies, effectively filtering out
many possible contributors. This may be by design (e.g.
to ensure “committed” contributors). Regardless, it does
narrow the scope of the self-defined community.

CHALLENGES FOR DYNAMIC LANGUAGES

As discussed earlier, dynamic languages are not appropriate
in all contexts and their future success is not necessarily
guaranteed. It is worth asking whether the organizational
behaviors that have spawned them are appropriate for long-
term success, both individually and as a category.

Lack of Strategic Vision
To date, dynamic languages have not been driven by
strategic plans. In fact, most successful open source
projects (Mono and Gnome being notable exceptions)
have enjoyed success in spite of a lack of a long-term
plan, let alone a clearly defined vision. The pragmatic,
tactical approach to fix what’s broken today as op-
posed to anticipate the problems of tomorrow, has,
when combined with the selection processes inherent
in the open source ecosystem, led to a survival of the
fittest for today’s problems, rather than rewarding
those with the most compelling vision for future
success. It’s worth asking if the lack of a plan is guar-
anteed to be a winning approach in the long term.

A good example to highlight here is the different ap-
proaches toward newer standards such as SOAP, evident
in dynamic languages vs. Java and C#, for example. The
dynamic language communities are generally content
with letting “someone else” worry about the standards-
definition process, and are confident that they’ll be able
to support them when they are defined and stable. In
contrast, Microsoft and Sun have committed significant
resources to defining the standard, for clearly competi-
tive, non-altruistic reasons. It is reasonable to expect

that the resulting standards have been more influenced
by how well they fit with those languages than with
languages that got involved late in the standard-defini-
tion process. In this case, the combination of strategic
planning and the resources of large corporations clearly
resulted in shifts in the standard toward more strongly-
typed languages. An interesting counter-spin is that
dynamic language enthusiasts tend to prefer a different
approach to web services over SOAP (namely REpre-
sentational State Transfer, known as REST), which (they
claim) is simpler, more pragmatic, portable, robust, and
less resource-intensive.

No Real/Formal Budget
Given the importance of programming languages in
shaping IT, and the effective success of dynamic lan-
guages, it is stunning to realize that these languages
have effectively succeeded with no budget. Certainly real
value is invested, through sponsored work by individual
companies, to some degree through the various organi-
zations that support the languages, and predominantly
through the volunteer labor that goes in on a daily basis.
The fact remains, however, that there is no budget either
for significant marketing activities, or, more problemati-
cally, to engage in long-term technical projects.

26

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

If one guesses the budget supporting either the
language-related aspects of the .NET framework project
at Microsoft or the Java-related projects at Sun and IBM,
and compares it with the “sweat and tears” budget of
developer groups in the dynamic language communities,
it’s hard to bet on the “little guy.” However, even greater
inequalities have existed in the operating system or
database sectors, where the open source alternatives
have made tremendous strides, showing that traditional
budgeting and investment models should not be applied
blindly to open source efforts.

One important advantage that open source can bring to
bear in such competitive battles is that its costs of failure
and limits on success are negligible. If an effort to re-
engineer the Python virtual machine fails, all that’s lost is
volunteer time. This makes it possible to entertain doing
several such experiments simultaneously, and pick the
winner. Similarly, there are no limits on success—there is
no “cost of sales” to worry about with open source suc-
cess stories, nor are there support costs. The dynamics
of open source success tend to scale the pool of talented
contributors and the support bandwidth along with the
success. Still, ask any dynamic language lead if he could
use two manyears of dedicated work on the language
and the answer will always be yes.

Lack of a Marketing Department
Budgetary constraints aside, it is worth noting that
the market influence that dynamic languages have had
is the accomplishment of a wide pool of people with
quite narrow technical skills. While a few programmers
can also turn a good phrase or design a nice logo,
it’s fair to say that there is no marketing department
with the coordination, plan-based activities, and,
again, budget with which to influence decision makers.

Clearly the reward mechanisms which have led to
a growing pool of technical talent in each language
community have not led to a sizable pool of marketing
talent. Technologists are their own worst enemies
in cases such as these—they believe that the better
technologies will “win”, in the face of centuries of data
showing that sometimes it’s the technology with the
better ads that wins. While dynamic languages will un-
doubtedly survive without marketing, it is interesting
to contemplate how different the software world
would be in the absence of marketing (or, failing that,
with less asymmetric promotion).

Legal Stability / Patent Threats
One of the most vague but real threats to open source
in general is the unequal position of open source
communities in the face of legally savvy corporate
opposition. Specifically, the risk of patent and other
intellectual property attacks against open source
projects is worth considering seriously. The current
state of software patents (especially in the United
States) makes it disproportionately easy for larger
corporations to claim (and receive) software patents
for inventions that can be independently developed
by open source developers. Volunteer developers, as
a rule, have no direct economic interest in developing
the software, hence no interest in acquiring such
patents (even if the cost weren’t prohibitive for most
individuals). It is possible for patent-holding corpora-
tions to bring suits against commercial distributors
of dynamic languages, commercial users of dynamic
languages and, least likely but most threatening,
against the individual contributors to those languages.
The asymmetry evident in the relative legal arsenals
on both sides of that divide is worrisome11.

27

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

FORECAST

The history of dynamic languages is a source of inspira-
tion for the future of dynamic languages. A look at the
last 15 years and the impact of dynamic languages on
other languages suggests a few trends.

Embracing New Development Methodologies
Dynamic languages tend to be adopted by program-
mers who are resistant to “following the pack” (espe-
cially if they detect a marketing-driven impetus behind
the pack motion). It is therefore not surprising to note
that there is significant overlap between dynamic
language enthusiasts and proponents of novel develop-
ment methodologies: many of the Agile methods are
routinely adopted and defined by people working in
languages such as Smalltalk, Ruby, Perl, Python (and,
it must be said, Java). Many of the artifacts and scaf-
folding systems required by methodologies such as
Extreme Programming are often written in a dynamic
language, even if the main code base is not. This makes
sense: it’s an excellent application domain for these
languages, where performance matters less than ease
or speed of development and maintenance.

Life On the Edge
Dynamic languages were created to address computing
needs that mainstream languages ignored or couldn’t ad-
dress effectively due to their design limitations. Thus the
need to process text to respond to networking requests
(as in the CGI protocol, the foundation of the dynamic
web) led to the success of languages such as Perl. The
increase in the capabilities of routers and switches has
provided fertile ground for Tcl in the 21st century. The
explosion of database-backed websites developed and
maintained by non-engineers led to the sustained explo-
sion of PHP use worldwide.

The latest twist on the web, blogging, is powered at
least as much by dynamic languages as by more tra-
ditional languages. The need for rapid development
on more powerful mobile platforms is an interesting
avenue of growth for Python. In each of these cases,
adventurous people exploring new technologies
have used the strengths of dynamic languages to let
them build systems that, in later generations, become
more well-specified, and hence more appropriate for
reimplementation in system languages. The dynamic
languages’ affinity for loosely-defined, rapidly changing
requirements is evident in their past, and one can
expect it to be advantageous in the future. To put it
simply, the ease with which people can “hack some-
thing up” with dynamic languages makes them ideal for
the frontier, wherever it is at any given time.

New Languages
It is equally clear from studying the past that no specific
language has a good reason to expect to be the domi-
nant language in the future. Even within the dynamic
language category, popularity has shifted from one to
the other as a function of time, language evolution, and
primarily, different use cases. The lack of a commercial
outlook means that dynamic languages do fairly little to
actively bind their users to long-term commitments—
a consequence of which is that users of a dynamic
language routinely learn new languages, and, over the
course of a career, build expertise in several languages.

New Features
Programming languages evolve under various pressures:
bug fixing, the wishes of users (which often are simply
asking for “feature matching” from other languages), and
the more intellectual pressures of language designers,
who look for new architectures, or new syntactic or

28

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

semantic approaches, to increase either the breadth
of the language (i.e. support new machine architec-
tures) or its suitability for particular tasks. There are
opposing pressures, as noted above, such as require-
ments for backwards compatibility, which grow in
importance with mainstream adoption (mainstream
users tend to be much more conservative than early
adopters). Each of the major dynamic languages
has undergone massive revisions in the last decade,
leading to much more full-featured languages, while
growing the user base consistently.

New Economic and Legal Model
As has been argued elsewhere12, the existence of open
source implementations of a technology encourages the
commodification of that technology. While this phenom-
enon has been widely noted in the operating systems,
web server, and database markets, few analysts have
noted that there have been no serious efforts at defining
new strictly proprietary languages—Java is following
a modified open source model (the Java Community
Process), and even Microsoft has placed C# under the
auspices of an international standards body (ECMA).
The languages themselves are not seen as revenue
sources—the revenue models lie in the technologies that
the languages rely on.

Just as the commercial vendors have changed their
distribution model and seem to have moved toward the
open source model, open source communities have
been educated on the legal issues around software
distribution, from patents and the need to establish clear
intellectual property ownership, to the legal risks to which
the various actors (contributors, distributors, users) are
exposed. Evidence of this maturation is the formation of
non-profit umbrella organizations with legal guardianship

over the languages, revised license agreements, and
more formalized paperwork surrounding contributions
from third parties. For example, both the Perl and Python
communities actively built non-profit foundations (similar
to the Apache Foundation) with appropriate legal status,
advisors, and sufficient enough assets that they are
both launching targeted funding programs. The budgets
involved are still relatively small, but the significance of
the accomplishments should not be diminished.

CONCLUSION

The process by which programming languages are
chosen is an interesting one. Individuals tend to follow
the advice of peers, as well as being influenced by what
they perceive as trends, whether it’s for status or for
employability. However, these choices are easily recon-
sidered upon trying a language—working with a language
that is a poor fit is typically painful enough to convince
people to revisit their original choice. This dynamic is at
the heart of the popular success of dynamic languages—
sooner or later, programmers find one or more such
language that they like, or, put differently, that they are
able to use productively.

Unlike individuals, organizations choose languages
following a very different process, where trends are
probably even more important, but the process of “cor-
recting” earlier choices is much rarer, because the choice
of language is often made by non-programmers. From
the perspective of high-level managers, which program-
ming language should be used within an organization
is typically seen as a “low-level” consequence of a more
important decision on a “platform strategy” or “tech-
nology strategy.” That high-stakes decision is the focus
of tremendous battles among giants such as Microsoft

29

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

(which argues for its .NET/Longhorn strategy), Sun Micro-
systems (which promotes a Java-centric strategy), and a
variety of other players now arguing for Linux and a more
heterogeneous technology stack.

These policy choices tend to limit the programming
languages available to the programmers who will actually
implement the software, and, unfortunately, by nature of
being strategic and the result of long-term forecasting,
these policies often ignore the painful realities that pro-
grammers face today. It is not surprising, therefore, that
even in organizations that have clearly defined mandates
to use “only” .NET or Java, individual programmers, often
motivated primarily by a desire to “get things done,” have
for years used dynamic languages to solve particular
kinds of tasks.

Just as Linux was suddenly recognized as a significant
platform choice after years of being “snuck in through
the back door”, high-level open source programming
languages are becoming recognized by mainstream
analysts as key pieces of an effective approach to
building software. It could be to help keep legacy systems
running while in the middle of a multi-year transition to
a newer system; to integrate subsystems resulting from
mergers and acquisitions; to rapidly provide interfaces
to customers or partners who demand more flexible
integration ; or just to quickly dig through some log files
to identify an intruder and fix a network problem. Dy-
namic languages let people build and maintain important
software better and faster. The strengths of these lan-
guages derive from their open source nature, from their
pragmatic approach, and from their constant evolution in
response to real user needs. Ignoring them is equivalent
to ignoring the hammer in your tool chest because you’ve
just been sold a fancy screwdriver.

Further Reading
This paper claims little in the way of original thought.
Rather, it attempts to present an aggregate view of
common trains of thought among a wide set of people,
including programmers, language designers, language
historians, managers, analysts, and reporters. Readers
are encouraged to explore areas of specific interest on
the internet. Some recommended sites are listed below:

Websites
The dynamic languages have language-specific communi-
ties, which center on a few websites, and from which
most relevant technical content can be reached:

 › Perl: www.perl.org, use.perl.org, cpan.perl.org,
www.perl.com

 › Python: www.python.org
 › Tcl: www.tcl.tk
 › PHP: www.php.net
 › Ruby: www.ruby-lang.org
 › Groovy: groovy.codehaus.org

In addition, several of the sites that are part of the
O’Reilly Network (www.oreillynet.com) contain relevant
material, as do many of the mailing lists archived on
ActiveState’s ASPN site (aspn.ActiveState.com).

Contact ActiveState at 778.786.1101, or
business-solutions@activestate.com for a
complimentary consultation with ActiveState’s
language experts.

30

UNVEILING THE ORIGINS,
MYTHS, USE AND BENEFITS
OF DYNAMIC LANGUAGES

1. John K. Ousterhout, March 1998, “Scripting: Higher Level Programming for the 21st Century”, IEEE Computer; also available at:
www.tcl.tk/doc/scripting.html

2. See Tim O’Reilly coverage of the topic of the customizability of open source in “The Open Source Paradigm Shift“ (tim.oreilly.com/
opensource/paradigmshift_0504.html)

3. Even system languages tend to become higher level over time, but as a whole, dynamic languages are higher level than system
languages.

4. To some degree, the Java Community Process is an attempt by a corporation to replicate this successful part of the open source
development model.

5. See, for example, David Stutz’ reference to “the loosely coupled mindset that today’s leading edge developers apply to work and
play.” (www.synthesist.net/writing/onleavingms.html)

6. Jon Udell, Adam Bosworth, and others have written about the benefit of loose coupling web-services architectures; see e.g. www.
infoworld.com/articles/fe/xml/02/06/10/020610feappdevtci.xml

7. A playful analogy would be to suggest that the rate of typos a person produces depends on the skills of the individual writer
rather than the characteristics of the natural language (i.e. French vs. English) used.

8. There are references for this particular claim, such as An Empirical Comparison of Seven Programming Languages, IEEE Com-
puter, October 2000.

9. Advanced techniques such as whole-program analysis and type inference offer the promise of removing this restriction, but
those approaches have not yet been successfully used in real-world applications of dynamic languages.

10. It is interesting to note, for example, that Perl, Python, and Tcl have all picked an “implementation-driven” IETF-style model for
controlling language enhancements, rather than a “spec-first” W3C-style model. The focus on “rough consensus and working
code” tends to trump futuristic perspectives in the dynamic language evolution game.

11. As discussed by David Stutz in a trip report on the MIT/Sloan Free/Open Source Software Conference: www.synthesist.net/writ-
ing/ osspatents.html

12. See David Stutz’s essay “Some Implications of Commodification” (www.synthesist.net/writing/commodity_software.html)

ABOUT ACTIVESTATE
ActiveState believes that enterprises gain a competitive advantage when they are able to quickly create, deploy and efficiently manage software solutions that immediately create business value, but
they face many challenges that prevent them from doing so. The company is uniquely positioned to help address these challenges through our experience with enterprises, people and technology.
ActiveState is proven for the enterprise: more than two million developers and 97 percent of Fortune 1000 companies use ActiveState’s end-to-end solutions to develop, distribute, and manage
their software applications written in Java, Perl, Python, Node.js, PHP, Tcl and other dynamic languages. Global customers like Cisco, CA, HP, Bank of America, Siemens and Lockheed Martin trust
ActiveState to save time, save money, minimize risk, ensure compliance and reduce time to market.

© 2016 ActiveState Software Inc. All rights reserved. ActiveState, ActivePerl, ActiveState Komodo, ActivePerl Pro Studio, and Perl Dev Kit are registered trademarks of ActiveState. All other marks are
property of their respective owners

ActiveState Software Inc.
sales@activestate.com

Phone: +1.778.786.1100
Fax: +1.778.786.1133

Toll-free in North America:
1.866.631.4581

