ActiveState°

Adding a Programming Language

ActiveState Webinar

ActiveState

Panelists

- **Francois Ouellet**, Director of Development Practice, *Manulife*
- **George Williams**, Director of Data Science and Chief Evangelist, *GSI Technology*

Housekeeping

- Webinar recording and slides will be available shortly
- Share questions with panelists using the Question panel
- Q&A session following presentations

Track-record: 97% of Fortune 1000, 20+ years open source
 Polyglot: 5 languages - Python, Perl, Tcl, Go, Ruby
 Runtime Focus: concept to development to production


ActiveState[®]

ActiveState[®]

Adding a Programming Language

Gains vs Pains

Software Development Challenges

Source: ActiveState Developer Survey 2018, Open Source Runtime Pains

What's so Difficult?

- Education learn the new language & its tooling
- **Tooling** extend or replace your toolchain
- Workflow/Processes update your software development lifecycle

Education Resources

Learn at your own Pace:

- Paid Classes: lynda.com, Codecademy, Code School, Udemy, etc
- Free Resources: Code Camp, Edx, MIT Open Courseware, etc

Learn from Peers:

• Learn one; do one; teach one

Tooling

Gains:

- Polyglot IDEs
- Source code repositories like Git
- Binary repositories like Nexus
- Flexible code quality tools like SonarQube
- Popular automated testing tools like Selenium

Pains:

- Unit/integration/functional testing tools
- Language-specific build tools
- Polyglot IDEs vs dedicated IDEs

Workflow/ Processes

Considerations:

- **Builds** of Compiled vs Interpreted languages
 - e.g., Java + Maven vs Python + individual packages
- **Quality** of Statically- vs Dynamically-typed languages
 - e.g., C/C++ maturity vs JavaScript's novelty (0 days since last new framework)

Language Distributions

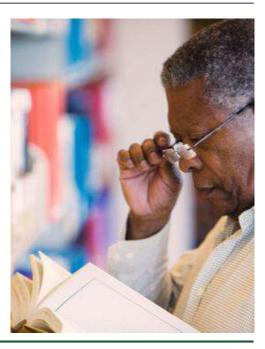
Adopt a standard distribution:

- **Community** free and ubiquitous (probably came with your OS)
 - Great way to get started learning the basics
- **Commercial** vendor-supported; includes popular, third-party libraries
 - Best for exploring the language and its ecosystem
- **Do-It-Yourself** don't!
 - Too complex when you're just starting out

ActiveState

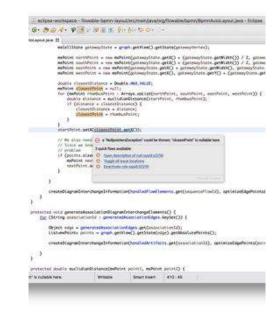
Introducing a New Programming Language Challenges & Lessons Learned

Francois Ouellet


Director, Development Practice, Canadian Division Manulife

Developers Perspective – The Challenges

- Learning a new programming language syntax usually takes only a few days. That's the easy part!
- What's more difficult is to learn:
 - How to use the language properly?
 - Which libraries/frameworks are available and which one(s) should we leverage?



- Formal classroom training is usually not sufficient
- Start with a small project team doing pair programming with a mix of permanent employees and external experts/consultants.
- Once you have a few internal experts, pair them with other employees.
- Don't forget to include a few production support developers in your project team. They will need to understand and support/fix that code when it goes in production!

- Make sure there's at least one good linter for the new programming language and use it:
 - Great tool to help avoiding some of the common bugs and pitfalls
 - It's a great time to enforce a coding standard and style
- It's even better if the linter is integrated in your developers IDE and perform on-the-fly code review
- You are new to the language but not to the business that you are building software for
 - Great opportunity to start building some shared libraries from day one

- Make sure there is a large and active community of people using that programming language in the industry:
 - Google is your developers' best friend when they are looking for information and answers
 - The more people use a language the more likely you are to find a lot of code examples or open-source libraries the will help accelerate the work of your project teams.

- Implement proper (and automated) open-source governance:
 - There are many tools on the market that will help you assess:
 - The security vulnerabilities for each library/version (CVE databases)
 - If you can/should use a given library based on its license agreement type
 - If there are "enough" people still contributing to a library
 - You can control which open-source libraries can be used:
 - by white/black listing
 - based on their characteristics (Must not be affected by a security vulnerability, is not licensed under GPL, ...)

Operations Perspective - Challenges

- What do we need to introduce in our infrastructure to support that new programming language?
 - JVM
 - .Net Framework
 - V8 engine
 - ...
- How do we configure that properly?
 - Memory
 - Disk
 - ...
- How do we monitor an application written in that new programming language?

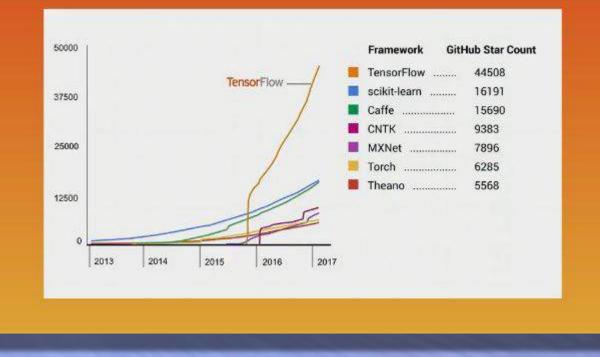
Operations Perspective - Solutions

- Follow at least some of the DevOps principles:
 - Implement Continuous Integration(CI) and Continuous Delivery (CD)
 - Implement proper monitoring
 - Make sure you have automated functional and performance testing
- Use Infrastructure as Code (IaC) and version control how to configure the platform/environment properly. Makes it possible to:
 - experiment and see the effect of any changes to the platform configuration
 - reapply the same configuration to other environments (UAT, Staging and Production)

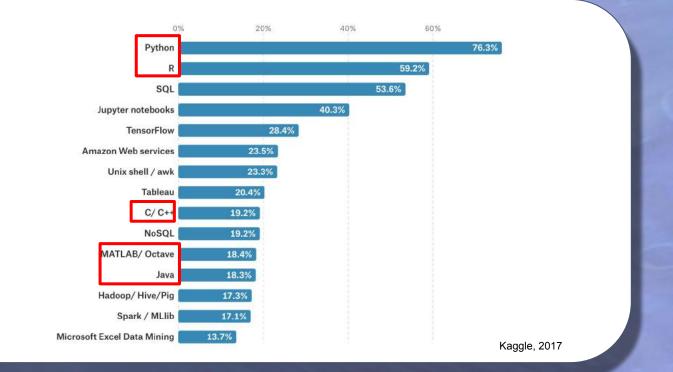
Thank you

George Williams

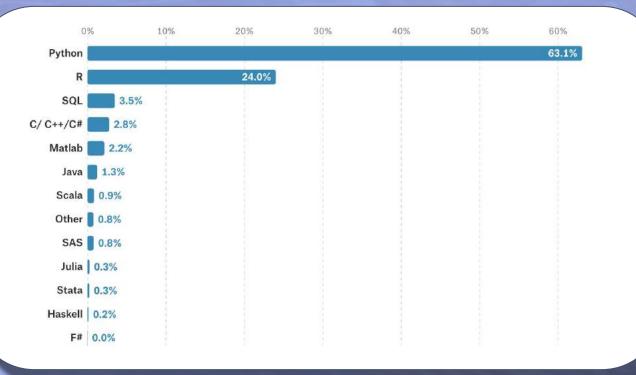
Who Am I?



Director, GSI Technology

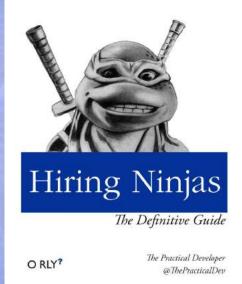

Previously, Chief Data Scientist Senior Data Scientist Al Research Scientist Software Engineer

"Al" Frameworks' Explosion



Data Science "Tools"

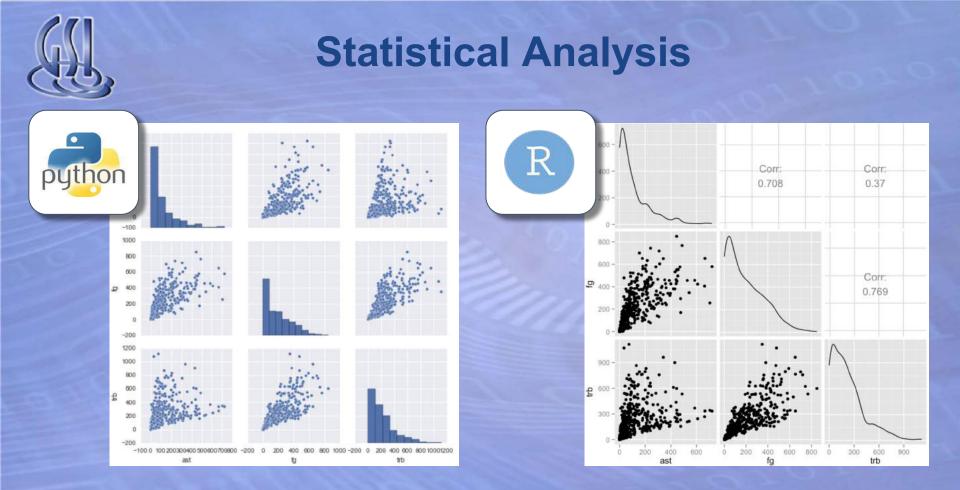
Recommended Languages



Hiring Data Science "Ninjas"

Ninjas love open office layouts and unlimited vacation time

Statistical Analysis



import seaborn as sns import matplotlib.pyplot as plt sns.pairplot(nba[["ast", "fg", "trb"]]) plt.show()

library(GGally)

nba %>%
 select(ast, fg, trb) %>%
 ggpairs()

Packages

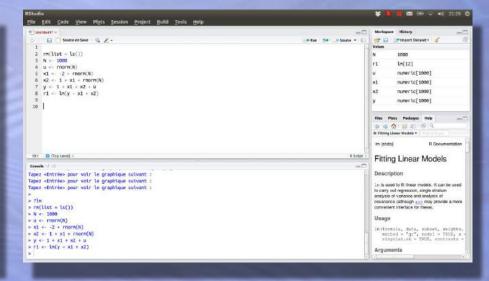
- pandas
- scikit-learn
- seaborn
- tensorflow
- pytorch
- matplotlib

- ggplot
- dplr
- shiny
- tidyr
- quantmod
- caret

Package Management

- pip/virtualenv
- pypi
- (ana)conda
- pyenv

- builtin
 - CRAN
 - (ana)conda

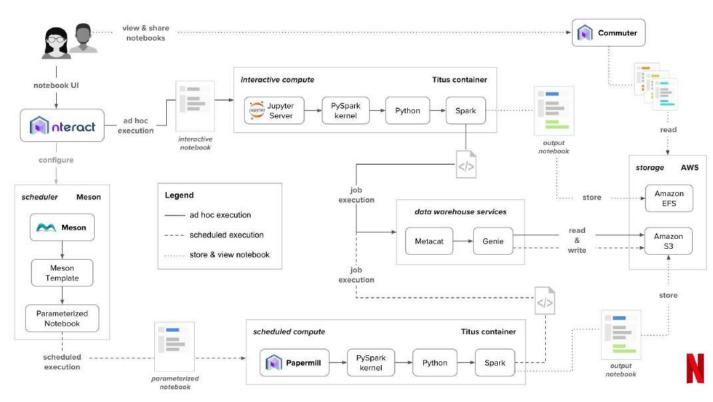

Integrated Development Environment

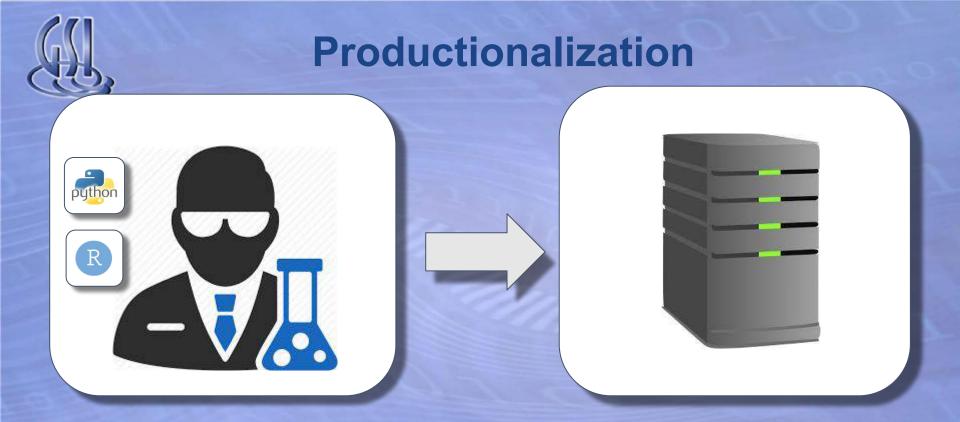
python

Jupyter Lab

E.	+ b <u>t</u> C	Eurenzubynb X 🖪 Terminal 1 X 🖪 Console 1 X 🗷 Detaipynb X 🛱 README md X			
	>natebooks	8 + 옷 10 10 * # C Code ~	Python 3	Ö	
	Name - Last Modifie	$\dot{x} = \sigma(y - x)$			
	📕 Data.ipynb 🛛 an hour ag				
	Fasta.ipynb a day ag	1	$\dot{y} = \rho x - y - xz$		
	 Julia.ipynb e day eg Lorenz.ipynb seconth ag 	$\dot{z} = -\beta z + xy$ Let's call the function once to view the solutions. For this set of parameters, we see the trajectories swifing around two points, called attractors. In (4): free forenz (space solve_forenz (t, z, z) = solve_forenz (t, z) = 2			
	 ■ R.Joynb a day ago ■ kits.csv a day ago ■ lightning.json B days ago ● lovenz.py 3 minutes ago 				
1000		Cutput View ×	x		
1908		algina - 1000 III beta - 267 III rho - 2800 III III III III III III III III III I	<pre>ualve_icrems(N=0, rms_time+is, sign=10.6, bstm=4.7, rho=36.0); ""Plot solution to the icrems differential equations."" Na = plst.figure(); w.sati(coff); programe the axes.limits w.set;Vir((-25, 35)); w.set;Limi(16, 35)); w.set;Limi(16, 35)); w.set;Limi(16, 35); fillioner_get(v(x,y_1, t0), signs-signs, beta-beta, rho=rho); ""Compute the time-derivative of a Lorenz system."" "y, y, z = x,y_2, z resture [signs + (y +), x + (rho = 2) - y, x + y - beta + 2); g.resdom.set(1); d = -13 + 38 + roy-random.seta((5, 3))</pre>	5	

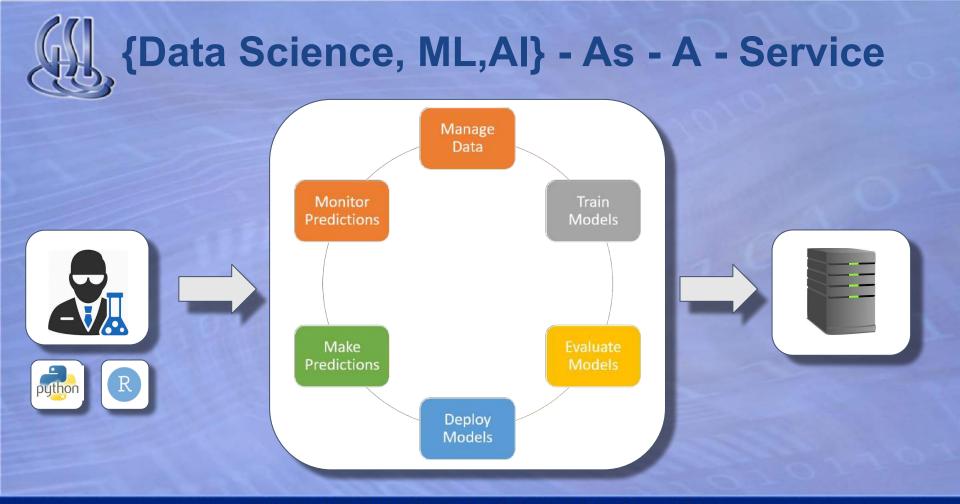
Analytics Back-End Integration

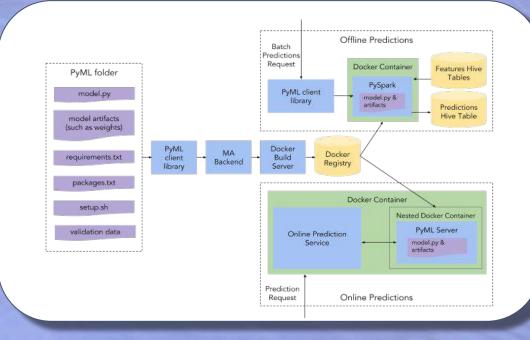




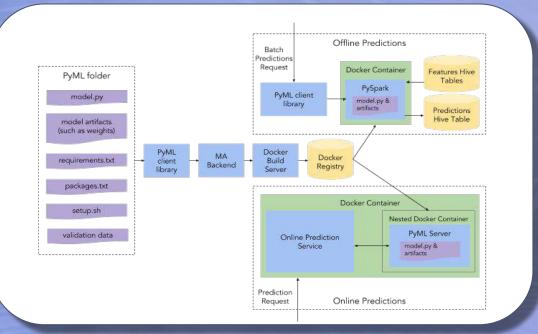
python

R


Netflix Notebook Infrastructure


Experiments

Production



Train An ML Model:

import pandas as pd import numpy as np from sklearn.datasets import load_breast_cancer

Prepare the dataset

Train logistic regression

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

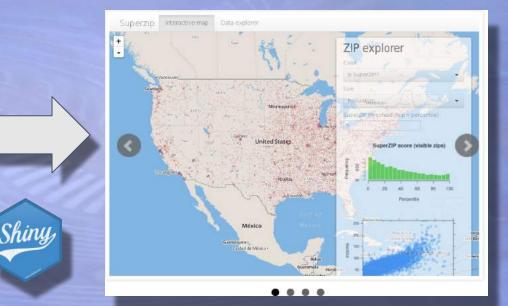
X_train, X_test, y_train, y_test = train_test_split(dataset.data, dataset.target, random_state=42)

log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)

Dockerize:

from pyml import Client
client = Client(user_email="kstumpf@uber.com", team_name="michelangelo")

Upload the model and build the model's Docker image model_id = client.upload_model(pyml_model)


Deploy:

client.deploy_model(model_id)

Studie File Edit Code View Plots Session Project Build Tools Help		¥ 9 4 22.28 ¢
() United to a	=C)	Mechapace History
D Source on Save 1 9. Z -		😅 🖬 🔄 Import Dataiet - 🧉 👘
1 2 rm(list = ls())	28	N 1000
3 N <- 1000		
4 u <- rnorm(N)		r1 [n[12]
5 x1 <2 + rnorm(N)		u numeric[1000]
6 x2 <- 1 + x1 + rnorm(N) 7 y 1 + x1 + x2 + y		x1 numeric[1000]
$y \leftarrow 1 + x_1 + x_2 + 0$ 8 $r_1 \leftarrow \ln(y - x_1 + x_2)$		x2 numeric[1000]
9 10		y numeric[1000]
	# Serier =	(a) (a) (a) (a) (a) (b) (a) R Fitting Lives: Hudels * (b)
101 🚺 (Top Level) :	Fitting Linear Models	
tereole of the		
<pre>ipez <entrée> pour voir le graphique sulvant :</entrée></pre>		
apez «Entrée» pour voir le graphique suivant : apez «Entrée» pour voir le graphique suivant :		In is used to fit linear models. It can be used
abez «Encree» pour vour le graphique survanc :	to carry out regression, single stratum	
71n		analysis of variance and analysis of opvariance calificuation and may provide a more
rm(list = ls())		convenient intertace for litese).
N <- 1000		Usage
u <- room(N) x1 <2 + room(N)		
$x^2 = 1 + x^1 + rnorm(N)$	<pre>imiformula, data, subset, weighte, sethod = "gr", model = TRUE, x <</pre>	
$y \leftarrow 1 + x1 + x2 + u$		singular.ok = 1922, contrasts =
$r1 \leftarrow ln(y = x1 + x2)$		Arguments
	0	-

Who's Better ?

It's not just about the language.
 Consider the broader ecosystem.
 The IDE is just as important as the language
 Does it fit within a platform / pipeline ?

Thank you to our panelists

- Francois Ouellet, Director of Development Practice, Manulife
- **George Williams**, Director of Data Science and Chief Evangelist, *GSI Technology*

What's Next

- Watch a demo: <u>https://www.youtube.com/watch?v=c5AlxN9ehrl</u>
- Get a demo marketing@activestate.com
- Contact us for the language build you need: platform@activestate.com

ActiveState[®]

Where to find us

Tel: **1.866.631.4581** Website: **www.activestate.com** Twitter: **@activestate** Facebook: **/activestatesoftware**

