
Software
Supply Chain
Security
Checklist

Attackers have recently shifted
their focus to infiltrating software
vendor development
environments. A single
compromised vendor can result in
thousands of vulnerable
customers when they install an
upgrade, patch or new version of
the compromised software.

If you build software in your
organization, or use a vendor’s
software in your development
process, you’ll want to assess the
strength of:

This datasheet provides you with
a checklist of controls that can
help you evaluate whether your
vendors’ and/or your own
software supply chain truly is
secure and can be trusted.

Import controls that ensure code
sourced from public repositories is
secure

Build controls that ensure built
artifacts are secure

Consume controls that ensure
artifacts run in your environments
are secure

Import Process Controls
The majority of supply chain attacks are still aimed at compromising
public repositories. While most organizations have no direct control
over the public repositories they use, there are a number of controls
that can help create a secure import process:

Verify the identity of uploader(s)/ author(s) haven’t suddenly changed
Verify that at least two reviewers have reviewed the submission
Verify that the timestamp of the submission is valid
Verify the revision history. A lack of history can be indicative of
typosquatted packages.
Verify the URL/ immutable reference to counter dependency
confusion*

*can occur when a build system mistakenly pulls in a similarly named
dependency from a public repository rather than your private repository

Public repositories are usually very quick to resolve common issues,
such as typosquatting. Simply creating a quarantine service for
packages that fail the above criteria can be an effective way to deal
with imported components that are suspect.

You and your vendors’ dev environment are now the security frontline
for your customers. Following best practices such as those listed
below can help protect and secure development environments:

Builds are scripted and have no manual inputs
Builds are run by a dedicated service (as opposed to on a developer's
workstation)
Build steps are executed in ephemeral environments that are
discarded at the end of the step
Build steps are executed independently in isolated environments
Build steps are executed in hermetic environments that have no
public network access
Builds are reproducible

Putting these controls into practice can thwart common attack
vectors like tampered build scripts, unconstrained packages, and
dynamic packages that attempt to include remote resources.

Build Process Controls

Consume Process Controls
Implementing secure import and build processes go a long way to
ensuring the code you run is also secure. However, you’ll still want to
ensure the packages you consume are signed, and that the signature
includes the following information via a cryptographic hash:

Output artifact
Build system used
Source (ie., an immutable reference to the build script)
Transitive dependencies (ie., dependencies of dependencies)
Build parameters, if any

ActiveState is the de-facto standard
for millions of developers around the
world who have been using our
commercially-backed, secure open
source language distributions for over
20 years. With the ActiveState
Platform, developers can now
automatically build their own Python,
Perl or Tcl Environments for Windows,
Linux or Mac—all without requiring
language or operating system
expertise.

www.activestate.com

Toll-free in NA: 1-866.631.4581

solutions@activestate.com

©2021 Activestate Software Inc. All rights
reserved. ActiveState®, ActivePerl®,
ActiveTcl®, ActivePython®, Komodo®,
ActiveGo™, ActiveRuby™, ActiveNode™,
ActiveLua™, and The Open Source Languages
Company™ are all trademarks of Activestate.

ActiveState Platform:
Turnkey Supply Chain Security

Implementing all the controls listed above can be both time and
resource intensive. The shortcut most organizations rely on is to
pick a trusted vendor and exclusively use their signed packages.
Unfortunately, this method can be compromised when:

Instead, consider using the ActiveState Platform to secure your
Python, Perl and Tcl supply chains. It implements many of the best
practices listed here in order to create verifiably reproducible
builds in which the provenance (ie., the origin) can be established
for each artifact.

Rather than cobbling together custom code and multiple solutions
from multiple vendors, the ActiveState Platform can provide an
out-of-the-box, end-to-end solution saving organizations
considerable time, resources and money.

You can try the ActiveState Platform by signing up for a free
account at platform.activestate.com

Developers install a package directly from the public repository
Attackers compromise the development environment of trusted
vendors prior to the signing service, such as happened with
SolarWinds and Codecov.

