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Growing Supply Chain Threat

FIGURE 1C

Next Generation Software Supply Chain Attacks (2015 — 2020)
Typosquatting, Maliclous Code Injectlon, and Tool Tampering
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Source: Sonatype State of the Software Supply Chain 2021



https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
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State of Supply Chain Security
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Supply Chain Security Maturity by Org Size

Address “Import” security issues like:

m  Typosquatting
= Dependency confusion
= Author impersonation

Address “Build” security issues like:
= Malicious build/install scripts
= Dynamic packages that include remote

resources

Address “Consumption” security issues, like:
m Using signed and verified packages
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State of Supply Chain Security

MME WD WIS This is despite the fact that:

40%

m  Public repos contain hundreds of
thousands of packages created by tens
of thousands of authors and
maintainers, all of whom must be
trusted.

30%

20%

= Public repos contain pre-built, but
unsigned packages.

10%

0%

Implicitly Trust Repo

Public Repository Trust by Org Size 5
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| State of Supply Chain Security
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50% The issue is twofold:

= Open source software is typically built
as a one-off task on a per-project
basis for the operating system(s) used
by the team.

40%
30%

20% .
= Open source dependencies, once

added to the codebase, are rarely

10% updated/maintained*.

0%

*Veracode State of Software Security v12

Reproducible Builds by Org Size 6
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Poll: How would you rate your supply chain security?

Poor - we import pre-built dependencies and implicitly trust the vendor/
public repository.

Average - we build dependencies from source code, but our build system
is not explicitly secured/ designed to create reproducible builds.
Excellent - we build everything from source in a reproducible way, and

frequently audit our build infrastructure for security holes.
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Dependency Vendoring
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Dependency Vendoring is a Dependency Management strategy that
involves checking all your dependencies into your Code Repository 8
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J Prosand Cons of Self-Vendoring

Pros: Cons:
m Avoid Dependency Conflicts m  Need to Build Everything Yourself
m Avoid Breaking the Build m QOutdated Dependencies
m Consistent Deployments m Invisible Vulnerabilities

Faster Fixes m  Source Code/Repository Clutter
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ActiveState Platform
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I Dependency Vendoring Comparison

Prebuilt? [Secure? |Up to Date? |Time & Resources
Public Repo Yes No Yes Low
Trusted Vendor Yes Yes No Low
Build It Yourself No Yes Yes High
ActiveState Platform No Yes Yes Low
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SLSA & Secure Build Service
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J SLSA - Addressing Supply Chain Security

m SLSA - Supply Chain Levels for Software Artifacts (https:/slsa.dev/).

m OSSEF Initiative - Operates under OSSF umbrella
m Industry Backed - Google, ChainGuard, Linux Foundation

m  Multiple Levels - Levels 0 through 4 providing increasing assurance.



https://slsa.dev/
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I Artifacts and Attestations

m Artifact - Any digital asset which forms part of a software supply chain. Source
code, build scripts, installable binaries.

m Attestation - A statement about the provenance of an Artifact. Who created it,
how, when and with what.

m In-toto ITE-6 - The recommended format for attestations.

m Non-Falsifiable - SLSA levels 3 and above
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Secure Build Service

m  Tamper-proof system creates reproducible builds of secure artifacts

Scripted

Build Service

Ephemeral Environment
Build Isolated

Parameterless

S S PSS PSS

Hermetic

Reproducible
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Poll: How SLSA compliant is your build system?

Uses only Scripted Builds

|s a Dedicated Build Service

Employs Ephemeral, Isolated Build Steps
Creates only Parameterless Builds

Employs Hermetically Sealed Environments

Generates Reproducible Builds
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Automatically Generate SBOMS

Software Bill Of Materials (SBOM) for each of your runtime environments

GraphiQL () | Prettify | Merge | Copy | History

sbomCorg: "JeffR"

ery.sbom: SbomResult!

Retrieve Software Bill of Materials for a given commit on a
project for an org
oo sy
author
timestamp
components{

supplier
checksum
Ticense
relationship

noop-builder”,

“relationship”: "Utilities"

"license": "(MIT-1.0)",

"checksum": 6571034592066 f70669c67€ad031b138f4249C768c429674f6f2efe781e077
"supplier": "ActiveState",

"version": "1.0.0"

: "perl”
"(MIT-1.0)",

81b4a18aebt 3c837¢"
"ActiveState",
"1.0.23"

‘aaae6fcod a3dcf 004 c16b1b77CfbcSbd1693F77"
: "ActiveState”,
1.0.36'

a 2lib-builder”
“relationship”: "zlib",
MIT",
"850¢ fb3F60447524c2df

"ActiveState",

"version": "1.0.0"

< Docs
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Automatically Generate SLSA Attestations

m Every build step logged and signed
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J Cost-Effective Supply Chain Security

m Produce a catalog of dependencies

m  Securely built

m  Reproducible runtime environments across all operating systems
m SBOMSs and verifiable artifact attestations

m Can be integrated into existing build systems to enhance dependency security
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Platform Demo

20



ActiveState

| Demo: Create a Runtime Environment

You have unsaved changes. Save your changes to update your project.

Importing packages from Python project file 43/100

Python 3.9.12
®1CVE >

Platforms

Linux Glibc 2.28 (@
x86 - 64-bit

Mac (¢
x86 - 64-bit

Windows 10 ()
x86 - 64-bit

Vulnerabilities ® 2 Critical ® 1 High

Python 3 Packages Vulnerabilities (CVEs) Licenses

+ flask Auto 2.1.2) v ® 0 CVEs
+ numpy Auto (1.22.1) v ® 0 CVEs [ cancel |
+ pillow Auto (9.1.0) v ® 0CVEs [ cancel |

Dependencies 38
Automatically added to support requested packages & platforms.

26 Changes [J Only show changes

21
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Q&A
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Next Steps

Schedule a demo with our product experts:
Learn more about Supply Chain Security:

Try the ActiveState Platform for free:
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https://www.activestate.com/get-demo/
https://www.activestate.com/solutions/slsa
https://platform.activestate.com/
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Webinar Feedback

Take our quick survey!
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https://www.surveymonkey.com/r/keeping-devs-happy

