ActiveState

Devops & SLSA

Best Practices for Software
Supply Chain Security

ActiveState

Introductions

Shaun Lowry Dana Crane

Development Team Lead Product Marketing Manager

ActiveState

Growing Supply Chain Threat

FIGURE 1C

Next Generation Software Supply Chain Attacks (2015 — 2020)
Typosquatting, Maliclous Code Injectlon, and Tool Tampering

I R R | N N [|
® B B b 2 @ 2 = s 2 8 a 9 g2 a2 2 2 € @ @ 2 8 8 §
} § 38 8382 33 3% %y % 5 s 28OS 5% S OE G 2020 2021

Source: Sonatype State of the Software Supply Chain 2021

https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021

ActiveState

State of Supply Chain Security

M SMB W MSB LE

60%
40%
20%

0%

Poor Average Excellent

Supply Chain Security Maturity by Org Size

Address “Import” security issues like:

m Typosquatting
= Dependency confusion
= Author impersonation

Address “Build” security issues like:
= Malicious build/install scripts
= Dynamic packages that include remote

resources

Address “Consumption” security issues, like:
m Using signed and verified packages

ActiveState

State of Supply Chain Security

MME WD WIS This is despite the fact that:

40%

m Public repos contain hundreds of
thousands of packages created by tens
of thousands of authors and
maintainers, all of whom must be
trusted.

30%

20%

= Public repos contain pre-built, but
unsigned packages.

10%

0%

Implicitly Trust Repo

Public Repository Trust by Org Size 5

ActiveState

| State of Supply Chain Security

B sve B MSB B LE
50% The issue is twofold:

= Open source software is typically built
as a one-off task on a per-project
basis for the operating system(s) used
by the team.

40%
30%

20% .
= Open source dependencies, once

added to the codebase, are rarely

10% updated/maintained*.

0%

*Veracode State of Software Security v12

Reproducible Builds by Org Size 6

ActiveState

Poll: How would you rate your supply chain security?

Poor - we import pre-built dependencies and implicitly trust the vendor/
public repository.

Average - we build dependencies from source code, but our build system
is not explicitly secured/ designed to create reproducible builds.
Excellent - we build everything from source in a reproducible way, and

frequently audit our build infrastructure for security holes.

ActiveState

Dependency Vendoring

—oa» S®
- @ = - =
rTO® - - Y
oo oo £ @
dHD @ ap *OP® oo @
S oo £ SO ®
POO® OO SBO - ® PO @ w
oe e - e ooo® @ -
@ = PTPED PV S - | @
& @ POo® o ® > k= - a1
@ ® o e ® @ £
SO e © o® @ ® @&
e " ToD® ® ® o >
- ® @ @ ® ®
D D B DD @ @
- G o = - O B W S
. - e - @ o® ® oo0o® o® -3
» oo O K2 -
- K _J - -«
= - o®

Dependency Vendoring is a Dependency Management strategy that
involves checking all your dependencies into your Code Repository 8

ActiveState

J Prosand Cons of Self-Vendoring

Pros: Cons:
m Avoid Dependency Conflicts m Need to Build Everything Yourself
m Avoid Breaking the Build m QOutdated Dependencies
m Consistent Deployments m Invisible Vulnerabilities

Faster Fixes m Source Code/Repository Clutter

ActiveState

ActiveState Platform

Open Source Vulnerability Code Repos
Repos Databases & Managers
3 NVD
‘ m @ W = Sonatype O u
=GO ﬁ © srackouck ogit
We continuously catalog open ActiveState ..Securely build and monitor runtime
source dependencies and then... BUILD - CERTIFY - RESOLVE environments for vulnerabilities
Developer Cl Tools Binary Repos Deployment
Machines
. g O aws § &
' 3 ¥ T(’ JFrog Artifactory — docker
22 Nexus A
10

circleci TeamCity

-.&

ActiveState

I Dependency Vendoring Comparison

Prebuilt? [Secure? |Up to Date? |Time & Resources
Public Repo Yes No Yes Low
Trusted Vendor Yes Yes No Low
Build It Yourself No Yes Yes High
ActiveState Platform No Yes Yes Low

ActiveState

SLSA & Secure Build Service

ActiveState

J SLSA - Addressing Supply Chain Security

m SLSA - Supply Chain Levels for Software Artifacts (https:/slsa.dev/).

m OSSEF Initiative - Operates under OSSF umbrella
m Industry Backed - Google, ChainGuard, Linux Foundation

m Multiple Levels - Levels 0 through 4 providing increasing assurance.

https://slsa.dev/

ActiveState

I Artifacts and Attestations

m Artifact - Any digital asset which forms part of a software supply chain. Source
code, build scripts, installable binaries.

m Attestation - A statement about the provenance of an Artifact. Who created it,
how, when and with what.

m In-toto ITE-6 - The recommended format for attestations.

m Non-Falsifiable - SLSA levels 3 and above

ActiveState

Secure Build Service

m Tamper-proof system creates reproducible builds of secure artifacts

Scripted

Build Service

Ephemeral Environment
Build Isolated

Parameterless

S S PSS PSS

Hermetic

Reproducible

<

ActiveState

Poll: How SLSA compliant is your build system?

Uses only Scripted Builds

|s a Dedicated Build Service

Employs Ephemeral, Isolated Build Steps
Creates only Parameterless Builds

Employs Hermetically Sealed Environments

Generates Reproducible Builds

ActiveState

Automatically Generate SBOMS

Software Bill Of Materials (SBOM) for each of your runtime environments

GraphiQL () | Prettify | Merge | Copy | History

sbomCorg: "JeffR"

ery.sbom: SbomResult!

Retrieve Software Bill of Materials for a given commit on a
project for an org
oo sy
author
timestamp
components{

supplier
checksum
Ticense
relationship

noop-builder”,

“relationship”: "Utilities"

"license": "(MIT-1.0)",

"checksum": 6571034592066 f70669c67€ad031b138f4249C768c429674f6f2efe781e077
"supplier": "ActiveState",

"version": "1.0.0"

: "perl”
"(MIT-1.0)",

81b4a18aebt 3c837¢"
"ActiveState",
"1.0.23"

‘aaae6fcod a3dcf 004 c16b1b77CfbcSbd1693F77"
: "ActiveState”,
1.0.36'

a 2lib-builder”
“relationship”: "zlib",
MIT",
"850¢ fb3F60447524c2df

"ActiveState",

"version": "1.0.0"

< Docs

ActiveState

Automatically Generate SLSA Attestations

m Every build step logged and signed

ActiveState

J Cost-Effective Supply Chain Security

m Produce a catalog of dependencies

m Securely built

m Reproducible runtime environments across all operating systems
m SBOMSs and verifiable artifact attestations

m Can be integrated into existing build systems to enhance dependency security

ActiveState

Platform Demo

20

ActiveState

| Demo: Create a Runtime Environment

You have unsaved changes. Save your changes to update your project.

Importing packages from Python project file 43/100

Python 3.9.12
®1CVE >

Platforms

Linux Glibc 2.28 (@
x86 - 64-bit

Mac (¢
x86 - 64-bit

Windows 10 ()
x86 - 64-bit

Vulnerabilities ® 2 Critical ® 1 High

Python 3 Packages Vulnerabilities (CVEs) Licenses

+ flask Auto 2.1.2) v ® 0 CVEs
+ numpy Auto (1.22.1) v ® 0 CVEs [cancel |
+ pillow Auto (9.1.0) v ® 0CVEs [cancel |

Dependencies 38
Automatically added to support requested packages & platforms.

26 Changes [J Only show changes

21

ActiveState

Q&A

ActiveState

Next Steps

Schedule a demo with our product experts:
Learn more about Supply Chain Security:

Try the ActiveState Platform for free:

23

https://www.activestate.com/get-demo/
https://www.activestate.com/solutions/slsa
https://platform.activestate.com/

ActiveState

Webinar Feedback

Take our quick survey!

24

https://www.surveymonkey.com/r/keeping-devs-happy

