
Migrating from
Python 2 to Python 3
Python 2 has two key problems because it was created before the Unicode
standard was fi nalized. One of the consequences of its early implementation
is that Python 2 does not strictly enforce Unicode conventions. As a result, it’s
inappropriate for coding in non-Roman languages. The other consequence
is that Python 2 implements a string type that does not clearly separate tex-
tual data from binary data. This lack of clarity often leads to erroneous bugs
being introduced into the code.

Python 3 resolves the two key issues with Python 2 by basing the default
core string type on Unicode. This is a big gain for Python programmers be-
cause it eliminates the text/binary confusion and enables multilingual pro-
gramming. Python 3 also introduces a number of other backwards-incom-
patible changes, including:

• Removal of classic Python 2 classes
• Changing integer division to automatically generate a fl oating point result
• Converting the print statement to a function

THE FUTURE OF PYTHON
Python 2.7 has been offi cially declared as the last version of Python 2 and it
will cease to be actively maintained on January 1, 2020. Further, Python 2.6 is
no longer supported. This has signifi cant ramifi cations for enterprises with
applications running under Python 2 as they’ll need to migrate to Python 3
sooner rather than later.

Python is one of the most popular programming languages in the world,
driven primarily by ease of use and the number of tasks, like machine learn-
ing, for which it is ideally suited. As the number of new Python users grows,
they’re most likely to start coding with their default Python installation,
which is more and more likely to be Python 3.

1. Upgrade your existing
code base to at least
Python 2.6 (Python
2.7 preferred).

2. Decide whether
you need to continue
supporting Python 2,
or if you can just go
straight to Python 3.

3. Ensure you have
a robust test suite in
place to continually
test for compatibility.

4. Ensure you have a
good understanding of
Python 3 conventions.

5. Choose your tooling:

Six: best for adding Python
3 compatibility to your
existing Python 2 code.

2to3: best for converting
Python 2 code to
Python 3 code.

Python-future: best for
those that want to focus on
writing python 3 code going
forward while ensuring
compatibility with Python 2.

2
5 STEPS TO

SUCCESS

PYTHON
MODERNIZATION:

TO3

website: www.activestate.com
Toll-free in NA: 1.866.631.4581
email: solutions@activestate.com

© 2018 ActiveState Software Inc. All rights reserved. ActiveState®, ActivePerl®, ActiveTcl®,
ActivePython®, Komodo®, ActiveGo™, ActiveRuby™, ActiveNode™, ActiveLua™ and
The Open Source Languages Company™ are all trademarks of ActiveState.

PYTHON MODERNIZATION: 2 TO 3

BENEFITS TO MIGRATING BEFORE THE DEADLINE

Improved Compatibility
94% of the top 360 most downloaded
packages offer Python 3 support.

Ease of Porting
Python 3.5 introduced changes that
simplified code porting in Sept 2015.

Cloud Support
The three largest public cloud providers (AWS, Azure
and Google Cloud Platform) fully support Python 3.

OS Support
Many versions of Linux (including Ubuntu and
Fedora) now install Python 3 by default.

Talent Pool
Your Python 2 programmers can grow their
skills to work on new corporate projects.

Recruitment
Be an attractive workplace to additional
Python programmers.

ACTIVESTATE – PYTHON BUILDS SINCE 1999
It’s always a good idea to have an expert to help smooth the way.
ActiveState is the de-facto standard for millions of developers around
the world and companies like IBM, Bombardier and CapitalOne.
ActiveState has been providing commercially-backed, secure, stable
and comprehensive OSS language distributions for over 20 years
including critical SLAs and maintenance updates. ActiveState’s
open source language distributions can also be freely downloaded
and are 100% compatible with community open source code.

SIX
Best if you want to add Python 3 compatibility to
your existing Python 2 code. Six provides a set of
utilities that wrap over the differences and allow you
to run your code under both Python 2 and Python 3.
Pros: as a single Python file, six can be
easily copied into your project.
Cons: need to remember to import packages
from the six.moves library since Python 3 moved
several functions to different modules.

2TO3
Best for converting Python 2 code to Python 3 code.
It reads Python 2 source code and applies a series
of fixers to transform it into valid Python 3 code.
Pros: can be rigged to run automatically;
can be extended to handle corner cases.
Cons: imperfect conversion; assumes you
want to continue coding in Python 2.

PYTHON-FUTURE
Much like six, it provides a compatibility layer
for Python 2 and 3 code, but python-future
is intended for those that want to focus on
writing python 3 code going forward.
Pros: unlike six, python-future allows you
to issue standard import commands.
Cons: Assumes you only want
to write Python 3 code.

THE FOLLOWING STEPS PROVIDE AN
OVERVIEW OF THE MIGRATION PROCESS:

Upgrade your code
base to at least
Python 2.6 (Python
2.7 preferred).

Decide whether you need
to continue supporting
Python 2, or if you can just
go straight to Python 3.

Ensure you have a
good understanding
of Python 3
conventions.

Ensure you have a
robust test suite in
place to continually
test for compatibility.

It’s time to pick
your tooling. There
are currently three
recommended packages:

BEST PRACTICES IN PORTING
You have a number of choices for migrating from Python 2 to
Python 3. The recommended course of action is to modernize
incrementally in order to address failures progressively,
rather than being overwhelmed by the task/errors all at
once. E.g. over multiple releases of your application

