Best Python Packages for Machine Learning
The Most Popular Python Packages For Machine Learning And How Data Scientists Can Work With Them More Efficiently
First things first, why use Python for Machine Learning?
Python is widely considered the tool of choice for data science projects in general and ML initiatives in particular.
If you have already have an understanding of Python and it’s machine learning capabilities, then you may skip this part. But if you are a data scientist or analyst who is just starting out, then here’s why Python is the best language to start with.
- When compared to C, C++ and Java, it is much easier to learn.
- It is intuitive and minimalistic.
- In comparison to R, there is less chance of making mistakes with Python, even if you are a code newbie.
- The simple syntax makes it easy to write and debug your code.
Many data scientists get introduced to machine learning with the help of Python.
Download Python for Windows, macOS or Linux
Which Python Packages are most useful for Machine Learning?

Python features the bulk of all open source ML and data engineering tools.
When you start working with Python, your first interaction will be with Pandas that helps prep data. When you move on to algorithm and model building, NumPy, SciPy and Scikit-learn help with the fundamentals while TensorFlow, Keras and Natural Language ToolKit open up the Machine Learning aspect. The matplotlib library and scimitar-learn library help with data visualization for machine learning.

- TensorFlow (deep learning with neural networks)*
- scikit-learn (machine learning algorithms)
- theano (deep learning with neural networks)
- keras (deep neural networks API)
- nlp (natural language processing)
- pytorch
- seaborn

- pandas (data analysis)
- NumPy (multidimensional arrays & linear regression)
- SciPy (algorithms to use with numpy)
- HDF5 (store & manipulate data)
- matplotlib (data visualization)
- sklearn (time series)
- nltk (Natural Language Toolkit)

- cryptography (recipes and primitives)
- pyOpenSSL (python interface to OpenSSL)
- passlib and bcrypt (password hashing)
- requests-oauthlib (Oauth support)
Open source community packages are powerful too but…..you can end up wasting days installing and configuring python packages before they are able to start writing any useful algorithms.
That’s where Python by ActiveState steps in.
ActiveState Python provides all the popular data science and machine learning packages, and is also optimized for computational performance to ensure productivity and security, right out of the box.
A key bottleneck in any machine learning project is the processing of algorithms. Python by ActiveState incorporates Intel’s Math Kernel Library (MKL), which takes advantage of multiple cores and vector registers to accelerate basic linear algebra operations and solvers, mathematical functions, Fast Fourier Transforms (FFTs), arithmetic and transcendental operations, and more.
When working with Python by ActiveState you can pick the ML packages you need and create an environment that can work for your entire team. Your mathematical routines and model training run FASTER, so you can get your MACHINE LEARNING PROJECT to market faster.

Why is ActiveState Python more useful for Data Scientists?
ActiveState Python makes it possible to build a single, consistent Python environment across the data science and programming teams. As a result, productizing your machine learning model is less like throwing it over the wall to coders and more like passing the baton.
Python shines as a rapid prototyping environment, providing web frameworks like Django and Flask that allow your developers to incorporate your learning models in web apps, APIs, etc., and then scale them out in production using integrated cloud tools for AWS and Google. While open source Python provides many of the tools and libraries for Machine Learning, high-value staff can end up wasting days on the low-value work of installing and configuring packages and resolving dependencies.
ActiveState Python not only brings you secure updated versions of the most popular open source packages for machine learning, but is also optimized for compatibility and speed, ensuring data scientists and application development teams can be productive right out of the box.
Having served Fortune 1000 companies for 20 years, we understand optimizing open source software like Python for quicker turnarounds.
Download Python for Machine Learning
‘So what do machine learning, data and python do together? Asking for a friend.’
The introduction of ML is causing a sea change in many industries. Software applications that don’t incorporate some form of ML are likely to be a rarity in the coming decade. The best example we can give to a beginner is its application in healthcare. Alzheimer’s onset can actually occur at a much younger age, but it goes undetected partly because testing for Alzheimer’s involves a spinal tap procedure that’s neither safe nor cheap. Today, an ML-assessed blood test can identify a set of blood proteins which can predict concentrations of amyloid-beta in spinal fluid.
Here are three Machine Learning tutorials you can try right away!



Whether you are a complete beginner venturing into Machine Learning, or an experienced developer working on some fresh big data use cases, ActiveState Python can save you time when it comes to finding and readying all the python packages you need to get the job done. It leaves you time to focus on actual data science – detecting anomalies, uncovering root causes, correlating logs, predicting failures, turn ideas into results and collaborate better with your team!